Richardson S, Gilks W R
Institut National de la Santé et de la Recherche Médicale, Villejuif, France.
Stat Med. 1993 Sep 30;12(18):1703-22. doi: 10.1002/sim.4780121806.
We construct a unifying representation of the structure of measurement error problems with particular reference to situations commonly encountered in epidemiological studies, and outline how estimation of the parameters of interest can be carried out in a Bayesian framework using Gibbs sampling. We show how this approach can be implemented for designs involving continuous measurement errors assessed through a validation substudy, and discuss our results on simulated data.
我们构建了测量误差问题结构的统一表示形式,特别参考了流行病学研究中常见的情况,并概述了如何在贝叶斯框架中使用吉布斯抽样对感兴趣的参数进行估计。我们展示了如何将这种方法应用于涉及通过验证子研究评估的连续测量误差的设计,并讨论了我们在模拟数据上的结果。