Wellek S
Institut für Medizinische Statistik und Dokumentation, Universität Mainz, Germany.
Biometrics. 1993 Sep;49(3):877-81.
We consider a hypothesis testing problem in which the alternative states that the vertical distance between the underlying survivor functions nowhere exceeds some prespecified bound delta > 0. Under the assumption of proportional hazards, this hypothesis is shown to be (logically) equivalent to the statement [beta[ < log(1 + epsilon), where beta denotes the regression coefficient associated with the treatment group indicator, and epsilon is a simple strictly increasing function of delta. The testing procedure proposed consists of carrying out in terms of beta (i.e., the standard Cox likelihood estimator of beta) the uniformly most powerful level alpha test for a suitable interval hypothesis about the mean of a Gaussian distribution with fixed variance. The computation of the critical constant of this test is very easy in practice since it admits a representation as the root of the alpha th quantile of a noncentral chi-square distribution with a single degree of freedom.
我们考虑一个假设检验问题,其中备择假设表明潜在生存函数之间的垂直距离在任何地方都不超过某个预先指定的界限δ>0。在比例风险假设下,该假设被证明(逻辑上)等同于陈述[β]<log(1 + ε),其中β表示与治疗组指标相关的回归系数,而ε是δ的一个简单严格递增函数。所提出的检验程序包括针对具有固定方差的高斯分布均值的合适区间假设,根据β(即β的标准Cox似然估计量)进行一致最强大水平α检验。在实践中,该检验的临界常数的计算非常容易,因为它可以表示为具有单个自由度的非中心卡方分布的α分位数的根。