Suppr超能文献

线虫运动理论:中间神经元对体运动神经元的控制。

Theory of the locomotion of nematodes: control of the somatic motor neurons by interneurons.

作者信息

Niebur E, Erdös P

机构信息

Institute of Theoretical Physics, University of Lausanne, Switzerland.

出版信息

Math Biosci. 1993 Nov;118(1):51-82. doi: 10.1016/0025-5564(93)90033-7.

Abstract

The only animal of which the complete neural circuitry is known at the submicroscopical level is the nematode Caenorhabditis elegans. This anatomical knowledge is complemented by functional insight from electrophysiological experiments in the related nematode Ascaris lumbricoides, which show that Ascaris motor neurons transmit signals electrotonically and not with unattenuated spikes. We developed a mathematical model for electrotonic neural networks and applied it to the motor nervous system of nematodes. This enabled us to reproduce experimental results in Ascaris quantitatively. In particular, our computed result of the velocity v approximately equal to 6 cm/s of neural excitations in the Ascaris interneurons supports the simple hypothesis that the so-called rapidly moving muscular wave is produced by a neural excitation traveling at the same speed in the interneuron as the muscular wave. In C. elegans, the computed velocity v approximately equal to 8-30 cm/s of signals in the interneurons is much larger than the observed velocity v approximately equal to 0.2 cm/s of the body wave. Therefore, the hypothesis that the muscular wave is produced by a synchronous neural excitation wave cannot hold for C. elegans. We argue that stretch receptor control is the most likely mechanism for the generation of body waves used in the locomotion of C. elegans. Extending the simulation to larger groups of neurons, we found that the neural system of C. elegans can operate purely electrotonically. We demonstrate that the same conclusion cannot be drawn for the nervous system of Ascaris, because in the long (l approximately equal to 30 cm) interneurons the electrotonic signals would be too strongly attenuated. This conclusion is not in contradiction with the experimental findings of electrotonic signal propagation in the motor neurons of Ascaris because the latter are shorter (l approximately equal to 5 cm) than the interneurons.

摘要

在亚微观层面,唯一已知完整神经回路的动物是线虫秀丽隐杆线虫。在相关线虫蛔虫中进行的电生理实验提供了功能方面的见解,对这一解剖学知识起到了补充作用。这些实验表明,蛔虫运动神经元以电紧张方式传递信号,而非通过无衰减的尖峰信号。我们开发了一个用于电紧张神经网络的数学模型,并将其应用于线虫的运动神经系统。这使我们能够定量再现蛔虫的实验结果。特别是,我们计算得出蛔虫中间神经元中神经兴奋速度(v)约为(6)厘米/秒,这支持了一个简单的假设,即所谓的快速移动肌肉波是由中间神经元中以与肌肉波相同速度传播的神经兴奋产生的。在秀丽隐杆线虫中,计算得出中间神经元中信号的速度(v)约为(8 - 30)厘米/秒,远大于观察到的体波速度(v)约为(0.2)厘米/秒。因此,肌肉波由同步神经兴奋波产生的假设不适用于秀丽隐杆线虫。我们认为,牵张感受器控制是秀丽隐杆线虫运动中产生体波的最可能机制。将模拟扩展到更大的神经元群体时,我们发现秀丽隐杆线虫的神经系统可以完全以电紧张方式运作。我们证明,对于蛔虫的神经系统不能得出同样的结论,因为在长((l)约为(30)厘米)的中间神经元中,电紧张信号会过度衰减。这一结论与蛔虫运动神经元中电紧张信号传播的实验结果并不矛盾,因为后者比中间神经元短((l)约为(5)厘米)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验