von Schaewen A, Sturm A, O'Neill J, Chrispeels M J
Department of Biology, University of California, San Diego, La Jolla 92093-0116.
Plant Physiol. 1993 Aug;102(4):1109-18. doi: 10.1104/pp.102.4.1109.
The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of beta 1-->2 xylose and alpha 1-->3 fucose residues, are derived from typical mannose9(N-acetylglucosamine)2 (Man9GlcNAc2) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arabidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man5GlcNAc1 glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man9GlcNAc2 and Man8GlcNAc2 glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, we obtained a unique strain that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan.
植物糖蛋白的复杂天冬酰胺连接聚糖,其特征在于存在β1→2木糖和α1→3岩藻糖残基,是通过高尔基体中一系列糖苷酶和糖基转移酶的活性,从典型的甘露糖9(N-乙酰葡糖胺)2(Man9GlcNAc2)N-连接聚糖衍生而来。通过用针对复杂聚糖的抗血清筛选叶提取物,我们分离出了拟南芥的一个突变体,该突变体在高甘露糖向复杂聚糖的转化过程中受阻。在源自突变体植物的愈伤组织中,所有聚糖都与伴刀豆球蛋白A结合。这些聚糖可以通过用内切糖苷酶H处理而释放,并且大多数与Man5GlcNAc1聚糖具有相同的大小。在甘露糖苷酶I的抑制剂脱氧甘露基野尻霉素存在下,突变体细胞合成Man9GlcNAc2和Man8GlcNAc2聚糖,这表明突变体中的生化损伤不是在内质网中高甘露糖聚糖的生物合成,而是在高尔基体中的修饰。细胞提取物的直接酶分析表明,突变体细胞缺乏N-乙酰葡糖胺基转移酶I,这是复杂聚糖生物合成途径中的第一种酶。突变体植物能够在几种环境条件下正常完成其发育,这表明复杂聚糖对于正常发育过程不是必需的。通过将拟南芥的复杂聚糖缺陷型菌株与表达糖蛋白植物血凝素的转基因菌株杂交,我们获得了一个独特的菌株,该菌株合成具有两个高甘露糖聚糖而不是一个高甘露糖和一个复杂聚糖的植物血凝素。