Suppr超能文献

用于全身动脉参数的识别算法及其在全人工心脏控制中的应用。

Identification algorithm for systemic arterial parameters with application to total artificial heart control.

作者信息

Ruchti T L, Brown R H, Jeutter D C, Feng X

机构信息

Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI 53233.

出版信息

Ann Biomed Eng. 1993 May-Jun;21(3):221-36. doi: 10.1007/BF02368178.

Abstract

A new algorithm for estimating systemic arterial parameters from systolic pressure and flow measurements at the root of the aorta is developed and tested through a systems identification approach. The resulting procedure has direct application to a total artificial heart (TAH) control system currently under development. Identification models, representing the systemic arterial system, are developed from existing work in the area of cardiovascular modeling. The resistive and compliance components of these models are physically significant, representing overall hydraulic properties of the systemic arterial system. A unique method of parameterizing the identification models is designed which operates on the basis of aortic pressure and flow measurements taken exclusively during systole. The estimator is a modified recursive least squares algorithm which utilizes covariance modification to track time-varying parameters and a dead-zone to improve the robustness. Performance of the estimation algorithm was tested on data generated by a higher-order distributed model of the systemic arterial bed using normal canine parameters. Results from model-to-model experiments verify the consistency of the estimates and the ability of the estimator to converge quickly and track dynamically varying parameters.

摘要

通过系统辨识方法,开发并测试了一种从主动脉根部的收缩压和流量测量值估算全身动脉参数的新算法。所得程序可直接应用于目前正在开发的全人工心脏(TAH)控制系统。代表全身动脉系统的辨识模型是根据心血管建模领域的现有工作开发的。这些模型的阻力和顺应性成分具有物理意义,代表了全身动脉系统的整体水力特性。设计了一种独特的参数化辨识模型的方法,该方法仅基于在收缩期采集的主动脉压力和流量测量值进行操作。估计器是一种改进的递归最小二乘算法,它利用协方差修正来跟踪时变参数,并利用死区来提高鲁棒性。使用正常犬类参数,在由全身动脉床的高阶分布式模型生成的数据上测试了估计算法的性能。模型间实验的结果验证了估计的一致性以及估计器快速收敛和跟踪动态变化参数的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验