Suppr超能文献

Near-infrared monitoring of the cerebral circulation.

作者信息

Kurth C D, Steven J M, Benaron D, Chance B

机构信息

Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, PA 19104.

出版信息

J Clin Monit. 1993 Jul;9(3):163-70. doi: 10.1007/BF01617023.

Abstract

Near-infrared spectroscopy is a noninvasive bedside technique for monitoring hemoglobin saturation (HbO2%) in brain vasculature. The method linearly relates the optical signal detected from the surface of the head to HbO2%. To do so, the method relies on constant transcranial optical pathlength and light scattering as well as minimal interference by tissues overlying the brain. This study examined these premises. Optical signals from a dual-wavelength, near-infrared spectrometer were correlated with sagittal sinus HbO2% in 7 anesthetized piglets subjected to 7 different physiological conditions: normoxia, moderate and severe hypoxia, hyperoxia, hypocapnia, hypercapnic hyperoxia, and hypotension. These conditions were induced by varying the inspired O2 concentration (7-100%), ventilatory rate (5-35 breaths/min), and blood pressure (phlebotomy 20 ml/kg) to force HbO2% over a wide range (5-93%). To evaluate interference by tissues overlying the brain, correlations were repeated after the scalp and skull were rendered ischemic. Transcranial optical pathlength was measured by phase-modulated spectroscopy. Linear relationships between optical signals and sagittal sinus HbO2% were found with correlation coefficients ranging from -0.89 to -0.99 (p < 0.05) among animals; however, slope and intercept had coefficients of variability of approximately 15 and 333%, respectively. Almost identical linear expressions were observed whether scalp and skull were ischemic or perfused. Transcranial optical pathlength was constant in each animal, but ranged from 10 to 18 cm among animals. The data indicate that the assumptions underlying near infrared spectroscopy are reasonably accurate in a given animal, but that the constants for transcranial optical pathlength and light scattering are not the same in all animals.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验