Retsky K L, Freeman M W, Frei B
Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115.
J Biol Chem. 1993 Jan 15;268(2):1304-9.
The oxidative modification of low density lipoprotein (LDL) has been proposed as an important causative event in the development of human atherosclerosis. As a corollary of this hypothesis, antioxidants that can prevent LDL oxidation may inhibit atherosclerosis. Oxidative modification of LDL in vitro, either induced by Cu2+ or mediated by cultured arterial wall cells in media containing trace amounts of transition metal ions, is strongly inhibited by vitamin C (L-ascorbic acid (AA)). AA, however, is known to act as a prooxidant rather than an antioxidant in the presence of transition metal ions. We observed that AA is oxidized rapidly when incubated with Cu2+ and LDL, leading to transient formation of dehydro-L-ascorbic acid (DHA). Although AA and DHA can no longer be detected after 3.5 h of incubation, LDL resists oxidative modification for at least 20 h, as assessed by anodic gel electrophoretic mobility. Remarkably, DHA protects LDL more effectively against both Cu(2+)-induced lipid peroxidation and shifts in electrophoretic mobility than does AA; indeed, AA per se, without oxidation to DHA, offers no protection. By inhibiting oxidative modification of LDL, AA and DHA prevent uptake of LDL by macrophages via the scavenger receptor pathway. When LDL is incubated with DHA followed by gel filtration, LDL remains protected against subsequent Cu(2+)-induced oxidative modification, suggestive of stable modification of LDL in the presence of DHA. In contrast, DHA is ineffective against a metal ion-independent type of oxidative stress, viz. aqueous peroxyl radicals; under these conditions, only AA is able to inhibit lipid peroxidation in LDL. Our data indicate that vitamin C protects LDL against atherogenic modification by two different mechanisms that may act in concert: (i) free radical scavenging by AA prevents aqueous oxidants from attacking and oxidizing LDL, and (ii) stable modification of LDL by DHA or decomposition product(s) thereof imparts increased resistance to metal ion-dependent oxidation.
低密度脂蛋白(LDL)的氧化修饰被认为是人类动脉粥样硬化发展过程中的一个重要致病事件。作为这一假说的必然结果,能够防止LDL氧化的抗氧化剂可能会抑制动脉粥样硬化。在体外,无论是由Cu2+诱导还是由含有微量过渡金属离子的培养基中的培养动脉壁细胞介导,LDL的氧化修饰都受到维生素C(L-抗坏血酸(AA))的强烈抑制。然而,已知在过渡金属离子存在的情况下,AA作为促氧化剂而非抗氧化剂起作用。我们观察到,当AA与Cu2+和LDL一起孵育时,AA会迅速被氧化,导致脱氢-L-抗坏血酸(DHA)的短暂形成。尽管孵育3.5小时后不再能检测到AA和DHA,但通过阳极凝胶电泳迁移率评估,LDL至少在20小时内抵抗氧化修饰。值得注意的是,与AA相比,DHA能更有效地保护LDL免受Cu(2+)诱导的脂质过氧化和电泳迁移率变化的影响;实际上,未氧化为DHA的AA本身没有保护作用。通过抑制LDL的氧化修饰,AA和DHA可防止巨噬细胞通过清道夫受体途径摄取LDL。当LDL与DHA孵育后进行凝胶过滤时,LDL仍然受到保护,免受随后Cu(2+)诱导的氧化修饰,这表明在DHA存在下LDL发生了稳定的修饰。相比之下,DHA对金属离子非依赖性的氧化应激无效,即水相过氧自由基;在这些条件下,只有AA能够抑制LDL中的脂质过氧化。我们的数据表明,维生素C通过两种可能协同作用的不同机制保护LDL免受动脉粥样硬化修饰:(i)AA清除自由基可防止水相氧化剂攻击和氧化LDL,(ii)DHA或其分解产物对LDL的稳定修饰可增强对金属离子依赖性氧化的抵抗力。