Izawa T, Foster R, Chua N H
Laboratory for Plant Molecular Biology, Rockefeller University, New York, NY 10021-6399.
J Mol Biol. 1993 Apr 20;230(4):1131-44. doi: 10.1006/jmbi.1993.1230.
Plant bZIP proteins exhibit a relaxed DNA-binding specificity for DNA sequence motifs containing an ACGT core. Gel mobility shift experiments employing ten different recombinant plant bZIP proteins demonstrated that nucleotides flanking the ACGT core affected binding specificity and identified three different types of ACGT elements: G-box, CACGTG; C-box, GACGTC; and A-box, TACGTA, motifs. These ten different bZIP proteins could be categorized into three groups according to their qualitative and quantitative specificity for G-box and C-box elements. Dissociation constant values (Kd values) of these bZIP proteins for high affinity G-box and C-box elements and reciprocal competition gel mobility shift assays confirmed our classification scheme. Group 1 proteins exhibit a stronger binding affinity for G-box elements, group 2 proteins bind both G-box and C-box motifs with comparable binding affinity, whereas the group 3 proteins display a stronger binding affinity for C-box oligonucleotides. Studies using a panel of G-box and C-box oligonucleotides differing in their flanking sequences identified high affinity binding sites. All ten plant bZIP proteins examined, except TGA1a, exhibited type A G-box binding activity preferring class I G-box elements. In contrast to the situation observed for G-box elements, C-box motifs displayed a very much more stringent flanking nucleotide requirement for binding activity. Protein/DNA binding experiments using scanning mutants of a high affinity G-box element and G-box/C-box hybrid elements demonstrated that bZIP protein binding activity depends upon the affinity of protein dimer subunits for ACGT half-sites. Information provided by our systematic analysis of plant bZIP DNA binding specificity can be used to identify high affinity binding sites for the plant bZIP proteins studied here. Assuming that only high affinity bZIP binding sites are likely to function in vivo, identification of these sites will allow us to predict which genes are activated by a particular bZIP protein.
植物bZIP蛋白对含有ACGT核心的DNA序列基序表现出较为宽松的DNA结合特异性。使用十种不同的重组植物bZIP蛋白进行的凝胶迁移率变动实验表明,ACGT核心两侧的核苷酸会影响结合特异性,并鉴定出三种不同类型的ACGT元件:G-box(核心序列为CACGTG)、C-box(核心序列为GACGTC)和A-box(核心序列为TACGTA)基序。这十种不同的bZIP蛋白可根据它们对G-box和C-box元件的定性和定量特异性分为三组。这些bZIP蛋白对高亲和力G-box和C-box元件的解离常数(Kd值)以及相互竞争凝胶迁移率变动分析证实了我们的分类方案。第1组蛋白对G-box元件表现出更强的结合亲和力,第2组蛋白对G-box和C-box基序的结合亲和力相当,而第3组蛋白对C-box寡核苷酸表现出更强的结合亲和力。使用一组侧翼序列不同的G-box和C-box寡核苷酸进行的研究确定了高亲和力结合位点。除TGA1a外,所有检测的十种植物bZIP蛋白均表现出A型G-box结合活性,偏好I类G-box元件。与G-box元件的情况相反,C-box基序对结合活性的侧翼核苷酸要求更为严格。使用高亲和力G-box元件的扫描突变体和G-box/C-box杂交元件进行的蛋白质/DNA结合实验表明,bZIP蛋白的结合活性取决于蛋白质二聚体亚基对ACGT半位点的亲和力。我们对植物bZIP DNA结合特异性的系统分析所提供的信息可用于鉴定本文研究的植物bZIP蛋白的高亲和力结合位点。假设只有高亲和力的bZIP结合位点可能在体内发挥作用,鉴定这些位点将使我们能够预测哪些基因被特定的bZIP蛋白激活。