Liu Y, Steinacker J M, Stauch M
Abteilung Sport- und Leistungsmedizin, Medizinische Klinik und Poliklinik der Universität Ulm, Germany.
Eur J Appl Physiol Occup Physiol. 1995;71(4):326-31. doi: 10.1007/BF00240412.
On reaching the respiratory compensation point (RCP) during rapidly increasing incremental exercise, the ratio of minute ventilation (VE) to CO2 output (VCO2) rises, which coincides with changes of arterial partial pressure of carbon dioxide (PaCO2). Since PaCO2 changes can be monitored by transcutaneous partial pressure of carbon dioxide (PCO2,tc) RCP may be estimated by PCO2,tc measurement. Few available studies, however, have dealt with comparisons between PCO2,tc threshold (TAT) and lactic, ventilatory or gas exchange threshold (VAT), and the results have been conflicting. This study was designed to examine whether this threshold represents RCP rather than VAT. A group of 11 male athletes performed incremental exercise (25 W.min-1) on a cycle ergometer. The PCO2,tc at (44 degrees C) was continuously measured. Gas exchange was computed breath-by-breath and hyperaemized capillary blood for lactate concentration ([la-]b) and PaCO2 measurements was sampled each 2 min. The TAT was determined at the deflection point of PCO2,tc curve where PCO2,tc began to decrease continuously. The VAT and RCP were evaluated with VCO2 compared with oxygen uptake (VO2) and VE compared with the VCO2 method, respectively. The PCO2,tc correlated with PaCO2 and end-tidal PCO2. At TAT, power output [P, 294 (SD 40) W], VO2 [4.18 (SD 0.57) l.min.1] and [la(-)] [4.40 (SD 0.64) mmol.l-1] were significantly higher than those at VAT[P 242 (SD 26) W, VO2 3.56 (SD 0.53) l.min-1 and [la(-)]b 3.52 (SD 0.75), mmol.l-1 respectively], but close to those at RCP [P 289 (SD 37) W; VO2 3.97 (SD 0.43) l.min-1 and [la(-)]b 4.19 (SD 0.62) mmol.l-1, respectively]. Accordingly, linear correlation and regression analyses showed that P, VO2 and [la(-)]b at TAT were closer to those at RCP than at VAT. In conclusion, the TAT reflected the RCP rather than VAT during rapidly increasing incremental exercise.
在快速递增运动过程中达到呼吸补偿点(RCP)时,分钟通气量(VE)与二氧化碳排出量(VCO2)的比值会升高,这与动脉血二氧化碳分压(PaCO2)的变化相一致。由于PaCO2的变化可通过经皮二氧化碳分压(PCO2,tc)进行监测,因此可通过测量PCO2,tc来估算RCP。然而,现有的研究很少涉及PCO2,tc阈值(TAT)与乳酸、通气或气体交换阈值(VAT)之间的比较,且结果相互矛盾。本研究旨在探讨该阈值代表的是RCP而非VAT。一组11名男性运动员在功率自行车上进行递增运动(25 W·min-1)。持续测量(44摄氏度时的)PCO2,tc。逐次计算气体交换情况,并每2分钟采集一次用于测定乳酸浓度([la-]b)和PaCO2的充血毛细血管血样。TAT在PCO2,tc曲线开始持续下降的转折点处确定。分别采用VCO2与摄氧量(VO2)比较的方法以及VE与VCO2比较的方法来评估VAT和RCP。PCO2,tc与PaCO2和呼气末PCO2相关。在TAT时,功率输出[P,294(标准差40)W]、VO2[4.18(标准差0.57)l·min-1]和[la(-)][4.40(标准差0.64)mmol·l-1]显著高于VAT时的值[分别为P 242(标准差26)W、VO2 3.56(标准差0.53)l·min-1和[la(-)]b 3.52(标准差0.75)mmol·l-1],但接近RCP时的值[分别为P 289(标准差37)W;VO2 3.97(标准差0.43)l·min-1和[la(-)]b 4.19(标准差0.62)mmol·l-1]。因此,线性相关和回归分析表明,TAT时的P、VO2和[la(-)]b比VAT时更接近RCP时的值。总之,在快速递增运动过程中,TAT反映的是RCP而非VAT。