Hamasaki T, Holwill M E, Barkalow K, Satir P
Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Biophys J. 1995 Dec;69(6):2569-79. doi: 10.1016/S0006-3495(95)80128-1.
We have determined the relationship between microtubule length and translocation velocity from recordings of bovine brain microtubules translocating over a Paramecium 22S dynein substratum in an in vitro assay chamber. For comparison with untreated samples, the 22S dynein has been subjected to detergent and/or to pretreatments that induce phosphorylation of an associated 29 kDa light chain. Control and treated dyneins have been used at the same densities in the translocation assays. In any given condition, translocation velocity (v) shows an initial increase with microtubule length (L) and then reaches a plateau. This situation may be represented by a hyperbola of the general form v = aL/(L+b), which is formally analogous to the Briggs-Haldane relationship, which we have used to interpret our data. The results indicate that the maximum translocation velocity Vo(= a) is increased by pretreatment, whereas the length constant KL(= b), which corresponds to Km, does not change with pretreatment, implying that the mechanochemical properties of the pretreated dyneins differ from those of control dyneins. The conclusion that KL is constant for defined in vitro assays rules out the possibility that the velocity changes seen are caused by changes in geometry in the translocation assays or by the numbers of dyneins or dynein heads needed to produce maximal translocational velocity. From our analysis, we determine that f, the fraction of cycle time during which the dynein is in the force-generating state, is small--roughly 0.01, comparable to the f determined previously for heavy meromyosin. The practical limits of these mechanochemical changes imply that the maximum possible ciliary beat frequency is about 120 Hz, and that in the physiological range of 5-60 Hz, beat frequency could be controlled by varying the numbers of phosphorylated outer arm dyneins along an axonemal microtubule.
我们通过在体外测定室中对牛脑微管在草履虫22S动力蛋白基质上的转运进行记录,确定了微管长度与转运速度之间的关系。为了与未处理的样品进行比较,22S动力蛋白经过了去污剂处理和/或诱导相关29 kDa轻链磷酸化的预处理。在转运试验中,对照动力蛋白和处理后的动力蛋白以相同密度使用。在任何给定条件下,转运速度(v)随微管长度(L)最初增加,然后达到平稳状态。这种情况可以用一般形式的双曲线v = aL/(L + b)来表示,这在形式上类似于我们用于解释数据的布里格斯 - 霍尔丹关系。结果表明,预处理会增加最大转运速度Vo(= a),而对应于Km的长度常数KL(= b)在预处理后不变,这意味着预处理后的动力蛋白的机械化学性质与对照动力蛋白不同。对于特定的体外测定,KL是恒定的这一结论排除了观察到的速度变化是由转运试验中的几何形状变化或产生最大转运速度所需的动力蛋白或动力蛋白头部数量变化引起的可能性。通过我们的分析,我们确定动力蛋白处于产生力状态的循环时间分数f很小 - 大约为0.01,与先前为重酶解肌球蛋白确定的f相当。这些机械化学变化的实际限制意味着最大可能的纤毛搏动频率约为120 Hz,并且在5 - 60 Hz的生理范围内,搏动频率可以通过沿轴丝微管改变磷酸化外臂动力蛋白的数量来控制。