Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.
Department of Genetics, Harvard Medical School, Boston, United States.
Elife. 2018 Oct 24;7:e32595. doi: 10.7554/eLife.32595.
Motor and non-motor crosslinking proteins play critical roles in determining the size and stability of microtubule-based architectures. Currently, we have a limited understanding of how geometrical properties of microtubule arrays, in turn, regulate the output of crosslinking proteins. Here we investigate this problem in the context of microtubule sliding by two interacting proteins: the non-motor crosslinker PRC1 and the kinesin Kif4A. The collective activity of PRC1 and Kif4A also results in their accumulation at microtubule plus-ends ('end-tag'). Sliding stalls when the end-tags on antiparallel microtubules collide, forming a stable overlap. Interestingly, we find that structural properties of the initial array regulate microtubule organization by PRC1-Kif4A. First, sliding velocity scales with initial microtubule-overlap length. Second, the width of the final overlap scales with microtubule lengths. Our analyses reveal how micron-scale geometrical features of antiparallel microtubules can regulate the activity of nanometer-sized proteins to define the structure and mechanics of microtubule-based architectures.
马达蛋白和非马达蛋白交联蛋白在决定基于微管的结构的大小和稳定性方面起着关键作用。目前,我们对微管阵列的几何性质如何反过来调节交联蛋白的输出知之甚少。在这里,我们研究了微管滑动背景下的这个问题,涉及两种相互作用的蛋白质:非马达交联蛋白 PRC1 和驱动蛋白 Kif4A。PRC1 和 Kif4A 的集体活性也导致它们在微管的正极(“端标签”)积累。当平行的微管上的端标签碰撞时,滑动会停滞,形成稳定的重叠。有趣的是,我们发现初始阵列的结构特性通过 PRC1-Kif4A 调节微管组织。首先,滑动速度与初始微管重叠长度成正比。其次,最终重叠的宽度与微管长度成正比。我们的分析揭示了微米级的平行微管的几何特征如何调节纳米级大小的蛋白质的活性,从而定义基于微管的结构的结构和力学特性。