Strater N, Hakansson K, Schnappauf G, Braus G, Lipscomb W N
Gibbs Chemical Laboratory, Harvard University, Cambridge, MA 02138, USA.
Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3330-4. doi: 10.1073/pnas.93.8.3330.
The crystal structure of the tyrosine-bound T state of allosteric yeast Saccharomyces cerevisiae chorismate mutase was solved by molecular replacement at a resolution of 2.8 angstroms using a monomer of the R-state structure as the search model. The allosteric inhibitor tyrosine was found to bind in the T state at the same binding site as the allosteric activator tryptophan binds in the R state, thus defining one regulatory binding site for each monomer. Activation by tryptophan is caused by the larger steric size of its side chain, thereby pushing apart the allosteric domain of one monomer and helix H8 of the catalytic domain of the other monomer. Inhibition is caused by polar contacts of tyrosine with Arg-75 and Arg-76 of one monomer and with Gly-141, Ser-142, and Thr-145 of the other monomer, thereby bringing the allosteric and catalytic domains closer together. The allosteric transition includes an 8 degree rotation of each of the two catalytic domains relative to the allosteric domains of each monomer (domain closure). Alternatively, this transition can be described as a 15 degree rotation of the catalytic domains of the dimer relative to each other.
利用R态结构的单体作为搜索模型,通过分子置换法,以2.8埃的分辨率解析了变构酵母酿酒酵母分支酸变位酶酪氨酸结合T态的晶体结构。发现变构抑制剂酪氨酸在T态的结合位点与变构激活剂色氨酸在R态的结合位点相同,从而确定了每个单体的一个调节结合位点。色氨酸激活是由于其侧链较大的空间尺寸,从而推开一个单体的变构结构域和另一个单体催化结构域的H8螺旋。抑制是由酪氨酸与一个单体的Arg-75和Arg-76以及另一个单体的Gly-141、Ser-142和Thr-145的极性接触引起的,从而使变构结构域和催化结构域靠得更近。变构转变包括两个催化结构域中的每一个相对于每个单体的变构结构域旋转8度(结构域闭合)。或者,这种转变可以描述为二聚体的催化结构域相对于彼此旋转15度。