Omlin C W, Giles C L
NEC Research Institute, Princeton, NJ 08540, USA.
Neural Comput. 1996 May 15;8(4):675-96. doi: 10.1162/neco.1996.8.4.675.
We propose an algorithm for encoding deterministic finite-state automata (DFAs) in second-order recurrent neural networks with sigmoidal discriminant function and we prove that the languages accepted by the constructed network and the DFA are identical. The desired finite-state network dynamics is achieved by programming a small subset of all weights. A worst case analysis reveals a relationship between the weight strength and the maximum allowed network size, which guarantees finite-state behavior of the constructed network. We illustrate the method by encoding random DFAs with 10, 100, and 1000 states. While the theory predicts that the weight strength scales with the DFA size, we find empirically the weight strength to be almost constant for all the random DFAs. These results can be explained by noting that the generated DFAs represent average cases. We empirically demonstrate the existence of extreme DFAs for which the weight strength scales with DFA size.
我们提出我们提出了一种用于在具有 sigmoidal 判别函数的二阶递归神经网络中对确定性有限状态自动机(DFA)进行编码的算法,并证明所构建网络接受的语言与 DFA 接受的语言相同。通过对所有权重的一小部分进行编程来实现所需的有限状态网络动态。最坏情况分析揭示了权重强度与最大允许网络大小之间的关系,这保证了所构建网络的有限状态行为。我们通过对具有 10、100 和 1000 个状态的随机 DFA 进行编码来说明该方法。虽然理论预测权重强度随 DFA 大小而缩放,但我们通过实验发现,对于所有随机 DFA,权重强度几乎是恒定的。这些结果可以通过注意到生成的 DFA 代表平均情况来解释。我们通过实验证明了存在权重强度随 DFA 大小缩放的极端 DFA。