Newton S M, Klebba P E, Michel V, Hofnung M, Charbit A
Unité de Programmation Moléculaire et Toxicologie Génétique, Centre National de la Recherche Scientifique Unité de Recherche Associée 1444, Institut Pasteur, Paris, France.
J Bacteriol. 1996 Jun;178(12):3447-56. doi: 10.1128/jb.178.12.3447-3456.1996.
We previously developed a genetic approach to study, with a single antibody, the topology of the outer membrane protein LamB, an Escherichia coli porin with specificity towards maltodextrins and a receptor for bacteriophage lambda. Our initial procedure consisted of inserting at random the same reporter epitope (the C3 neutralization epitope from poliovirus) into permissive sites of LamB (i.e., sites which tolerate insertions without deleterious effects on the protein activities or the cell). A specific monoclonal antibody was then used to examine the position of the inserted epitope with respect to the protein and the membrane. In the present work, we set up a site-directed procedure to insert the C3 epitope at new sites in order to distinguish between two-dimensional folding models. This allowed us to identify two new surface loops of LamB and to predict another periplasmic exposed region. The results obtained by random and directed epitope tagging are analyzed in light of the recently published X-ray structure of the LamB protein. Study of 23 hybrid LamB-C3 proteins led to the direct identification of five of the nine external loops (L4, L5, L6, L7, and L9) and led to the prediction of four periplasmic loops (I1, I4, I5, and I8) of LamB. Nine of the hybrid proteins did not lead to topological conclusions, and none led to the wrong predictions or conclusions. The comparison indicates that parts of models based on secondary structure predictions alone are not reliable and points to the importance of experimental data in the establishment of outer membrane protein topological models. The advantages and limitations of genetic foreign epitope insertion for the study of integral membrane proteins are discussed.
我们之前开发了一种遗传学方法,用单克隆抗体来研究外膜蛋白LamB的拓扑结构,LamB是一种大肠杆菌孔蛋白,对麦芽糊精具有特异性,也是噬菌体λ的受体。我们最初的步骤是将相同的报告表位(脊髓灰质炎病毒的C3中和表位)随机插入LamB的允许位点(即能够耐受插入且对蛋白质活性或细胞无有害影响的位点)。然后使用一种特异性单克隆抗体来检测插入表位相对于蛋白质和膜的位置。在本研究中,我们建立了一种定点插入方法,将C3表位插入新的位点,以区分二维折叠模型。这使我们能够识别LamB的两个新的表面环,并预测另一个周质暴露区域。根据最近发表的LamB蛋白的X射线结构,分析了通过随机和定点表位标记获得的结果。对23种LamB-C3杂交蛋白的研究直接鉴定出了九个外环中的五个(L4、L5、L6、L7和L9),并预测了LamB的四个周质环(I1、I4、I5和I8)。九种杂交蛋白未得出拓扑学结论,也没有得出错误的预测或结论。比较结果表明,仅基于二级结构预测的部分模型不可靠,并指出了实验数据在建立外膜蛋白拓扑模型中的重要性。本文还讨论了遗传外源表位插入在研究整合膜蛋白方面的优点和局限性。