Suppr超能文献

使用严重程度指标预测肺炎住院患者的死亡可能性。

Using severity measures to predict the likelihood of death for pneumonia inpatients.

作者信息

Iezzoni L I, Shwartz M, Ash A S, Mackiernan Y D

机构信息

Department of Medicine, Harvard Medical School, Beth Israel Hospital, Boston, MA 02215, USA.

出版信息

J Gen Intern Med. 1996 Jan;11(1):23-31. doi: 10.1007/BF02603481.

Abstract

OBJECTIVE

To see whether predictions of patients, likelihood of dying in-hospital differed among severity methods.

DESIGN

Retrospective cohort.

PATIENTS

18,016 persons 18 years of age and older managed medically for pneumonia; 1,732 (9.6%) in-hospital deaths.

METHODS

Probability of death was calculated for each patient using logistic regression with age, age squared, sex, and each of five severity measures as the independent variables: 1) admission MedisGroups probability of death scores; 2) scores based on 17 admission physiologic variables; 3) Disease Staging's probability of mortality model; the Severity Score of Patient Management Categories (PMCs); 4) and the All Patient Refined Diagnosis-Related Groups (APR-DRGs). Patients were ranked by calculated probability of death; 5) rankings were compared across severity methods. Frequencies of 14 clinical findings considered poor prognostic indicators in pneumonia were examined for patients ranked differently by different methods.

RESULTS

MedisGroups and the physiology score predicted a similar likelihood of death for 89.2% of patients. In contrast, the three code-based severity methods rated over 25% of patients differently by predicted likelihood of death when compared with the rankings of the two clinical data-based methods [MedisGroups and the physiology score]. MedisGroups and the physiology score demonstrated better clinical credibility than the three severity methods based on discharge abstract data.

CONCLUSIONS

Some pairs of severity measures ranked over 25% of patients very differently by predicted probability of death. Results of outcomes studies may vary depending on which severity method is used for risk adjustment.

摘要

目的

观察不同严重程度评估方法对患者院内死亡可能性的预测是否存在差异。

设计

回顾性队列研究。

患者

18016名18岁及以上因肺炎接受药物治疗的患者;1732例(9.6%)院内死亡病例。

方法

以年龄、年龄平方、性别以及五项严重程度评估指标中的每一项作为自变量,采用逻辑回归计算每位患者的死亡概率:1)入院时MedisGroups死亡概率评分;2)基于17项入院生理变量的评分;3)疾病分期死亡概率模型;患者管理类别(PMC)严重程度评分;4)以及所有患者细化诊断相关组(APR-DRG)。根据计算出的死亡概率对患者进行排序;5)比较不同严重程度评估方法的排序情况。对不同方法排序不同的患者,检查了14项在肺炎中被视为不良预后指标的临床发现的频率。

结果

MedisGroups和生理评分对89.2%的患者预测的死亡可能性相似。相比之下,与两种基于临床数据的方法(MedisGroups和生理评分)的排序相比,三种基于编码的严重程度评估方法根据预测的死亡可能性对超过25%的患者的排序不同。MedisGroups和生理评分比基于出院摘要数据的三种严重程度评估方法具有更好的临床可信度。

结论

一些严重程度评估指标对超过25%的患者根据预测死亡概率的排序差异很大。结局研究的结果可能因用于风险调整的严重程度评估方法而异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验