Suppr超能文献

一种可在芽殖酵母中重复使用的新型高效基因破坏盒。

A new efficient gene disruption cassette for repeated use in budding yeast.

作者信息

Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann J H

机构信息

Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Giessen, Germany.

出版信息

Nucleic Acids Res. 1996 Jul 1;24(13):2519-24. doi: 10.1093/nar/24.13.2519.

Abstract

The dominant kanr marker gene plays an important role in gene disruption experiments in budding yeast, as this marker can be used in a variety of yeast strains lacking the conventional yeast markers. We have developed a loxP-kanMX-loxP gene disruption cassette, which combines the advantages of the heterologous kanr marker with those from the Cre-lox P recombination system. This disruption cassette integrates with high efficiency via homologous integration at the correct genomic locus (routinely 70%). Upon expression of the Cre recombinase the kanMX module is excised by an efficient recombination between the loxP sites, leaving behind a single loxP site at the chromosomal locus. This system allows repeated use of the kanr marker gene and will be of great advantage for the functional analysis of gene families.

摘要

显性卡那霉素抗性(kanr)标记基因在芽殖酵母的基因破坏实验中起着重要作用,因为该标记可用于多种缺乏传统酵母标记的酵母菌株。我们开发了一种loxP-kanMX-loxP基因破坏盒,它结合了异源卡那霉素抗性标记与Cre-loxP重组系统的优点。这个破坏盒通过同源整合高效地整合到正确的基因组位点(通常为70%)。当Cre重组酶表达时,kanMX模块通过loxP位点之间的有效重组被切除,在染色体位点上留下一个单一的loxP位点。该系统允许卡那霉素抗性标记基因的重复使用,这对于基因家族的功能分析将具有很大优势。

相似文献

1
A new efficient gene disruption cassette for repeated use in budding yeast.
Nucleic Acids Res. 1996 Jul 1;24(13):2519-24. doi: 10.1093/nar/24.13.2519.
2
A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast.
Nucleic Acids Res. 2002 Mar 15;30(6):e23. doi: 10.1093/nar/30.6.e23.
3
Controlling gene expression in yeast by inducible site-specific recombination.
Nucleic Acids Res. 2000 Dec 15;28(24):E108. doi: 10.1093/nar/28.24.e108.
5
A set of loxP marker cassettes for Cre-mediated multiple gene disruption in Schizosaccharomyces pombe.
Biosci Biotechnol Biochem. 2004 Mar;68(3):545-50. doi: 10.1271/bbb.68.545.
6
New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica.
J Microbiol Methods. 2003 Dec;55(3):727-37. doi: 10.1016/j.mimet.2003.07.003.
8
A 2-microm DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae.
Yeast. 1999 Mar 15;15(4):271-83. doi: 10.1002/(SICI)1097-0061(19990315)15:4<271::AID-YEA371>3.0.CO;2-U.
9
PCR-based gene disruption and recombinatory marker excision to produce modified industrial Saccharomyces cerevisiae without added sequences.
J Microbiol Methods. 2005 Nov;63(2):193-204. doi: 10.1016/j.mimet.2005.03.015. Epub 2005 Jun 8.

引用本文的文献

1
Integrated Membrane Yeast Two-Hybrid System for the Analysis of Membrane Protein Complexes.
Bio Protoc. 2025 Aug 20;15(16):e5418. doi: 10.21769/BioProtoc.5418.
2
Sugar accelerates chronological aging in yeast via ceramides.
Cell Stress. 2025 Jul 22;9:158-173. doi: 10.15698/cst2025.07.308. eCollection 2025.
4
Machine learning reveals genes impacting oxidative stress resistance across yeasts.
Nat Commun. 2025 Jul 1;16(1):5866. doi: 10.1038/s41467-025-60189-3.
5
6
H2A.Z deposition by the SWR complex is stimulated by polyadenine DNA sequences in nucleosomes.
PLoS Biol. 2025 May 12;23(5):e3003059. doi: 10.1371/journal.pbio.3003059. eCollection 2025 May.
7
pH adjustment increases biofuel production from inhibitory switchgrass hydrolysates.
Bioresour Technol. 2025 Sep;432:132651. doi: 10.1016/j.biortech.2025.132651. Epub 2025 May 9.
9
Single-molecule tracking reveals the dynamic turnover of Ipl1 at the kinetochores in .
Life Sci Alliance. 2025 Apr 18;8(7). doi: 10.26508/lsa.202503290. Print 2025 Jul.
10
Total propagation of yeast prion conformers in ssz1∆ upf1∆ Hsp104 triple mutants.
Curr Genet. 2025 Mar 29;71(1):8. doi: 10.1007/s00294-025-01313-0.

本文引用的文献

1
The sequence of a 24,152 bp segment from the left arm of chromosome XIV from Saccharomyces cerevisiae between the BNI1 and the POL2 genes.
Yeast. 1996 Apr;12(5):505-14. doi: 10.1002/(SICI)1097-0061(199604)12:5%3C505::AID-YEA932%3E3.0.CO;2-F.
2
An overview of membrane transport proteins in Saccharomyces cerevisiae.
Yeast. 1995 Dec;11(16):1575-611. doi: 10.1002/yea.320111605.
3
From DNA sequence to biological function.
Nature. 1996 Feb 15;379(6566):597-600. doi: 10.1038/379597a0.
4
A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae.
Nucleic Acids Res. 1993 Jul 11;21(14):3329-30. doi: 10.1093/nar/21.14.3329.
5
Recycling selectable markers in yeast.
Biotechniques. 1994 Jun;16(6):1086-8.
8
A method for performing precise alterations in the yeast genome using a recycable selectable marker.
Nucleic Acids Res. 1995 Aug 11;23(15):3079-81. doi: 10.1093/nar/23.15.3079.
9
Micro-homology mediated PCR targeting in Saccharomyces cerevisiae.
Nucleic Acids Res. 1995 Jul 25;23(14):2799-800. doi: 10.1093/nar/23.14.2799.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验