Suppr超能文献

酶催化能力的演变。针对最简单合理动力学模型评估的最佳催化特性。

Evolution of enzyme catalytic power. Characteristics of optimal catalysis evaluated for the simplest plausible kinetic model.

作者信息

Brocklehurst K

出版信息

Biochem J. 1977 Apr 1;163(1):111-6. doi: 10.1042/bj1630111.

Abstract
  1. Evolutionary changes in the structure of an enzyme that provide an increase in its K(m) value are considered. Provided that K(m) increases as a result of increases in the forward rate constants of the catalysis relative to the reverse rate constants, the enzyme catalyses the conversion of a fixed concentration of its substrate more rapidly when its structure provides that K(m)>[S] than when K(m)<[S]. 2. Catalytic efficiency of enzymes is discussed in terms of the simplest plausible model, the Haldane [(1930) Enzymes, Longmans, London] reversible three-step model: [Formula: see text] The rate equation for the forward reaction of this model (formation of P) may be written in the simple form: [Formula: see text] K(eq.) is the equilibrium constant (=P/S), and k(cat.)=V/E, where E is the total enzyme concentration. 3. To assess the effectiveness of an enzyme, it is necessary only to determine the extent to which the constraints of a particular kinetic mechanism permit v(2) (v when K(m)>>[S]) to approach v(d) (the diffusion-limited rate). 4. The value of the optimal rate of catalysis (v(opt.), the maximal value of v(2)) is dictated by the equilibrium constant for the reaction, K(eq.); v(2)=v(d)/a, where [Formula: see text] when k(+1) is assumed equal to k(-3), and v(opt.)=v(d)/a(min.). When K(eq.)>/=1, it is necessary that k(+2)>>k(-1) for a to take its minimum value, a(min.); when K(eq.)<<1, it is necessary only that k(+2)>>K(eq.).k(-1), i.e. a can equal a(min.) even if k(+2)<k(-1). When K(eq.)>>1, v(opt.)=v(d); when K(eq.)=1, v(opt.)=v(d)/2, and when K(eq.)<<1, v(opt.)=K(eq.).v(d). 5. The analysis, together with predicted effects of evolutionary pressure, suggests that in practice the rates of the fastest enzyme-catalysed freely reversible reactions might be expected to be lower than the value of k(+1)E[S] by about an order of magnitude, particularly if K(eq.)<1. 6. The existing literature suggests that, in general, appropriate values of K(m) have evolved for the provision of high rates of catalysis but that many values of k(cat.) are not large enough to provide optimal rates of catalysis unless the value of k(+1)in vivo is lower than its value in free solution.
摘要
  1. 考虑酶结构的进化变化,这些变化会使其米氏常数(K(m))值增加。倘若K(m)因催化正向速率常数相对于逆向速率常数增加而增大,那么当酶结构使得K(m)>[S]时,酶催化固定浓度底物的转化比K(m)<[S]时更快。2. 依据最简单合理模型——霍尔丹([(1930)《酶》,朗文斯出版社,伦敦])可逆三步模型,讨论酶的催化效率:[公式:见原文]此模型正向反应(生成P)的速率方程可写成简单形式:[公式:见原文]K(eq.)是平衡常数(=P/S),k(cat.)=V/E,其中E是总酶浓度。3. 要评估一种酶的有效性,只需确定特定动力学机制的限制在多大程度上允许v(2)(当K(m)>>[S]时的v)接近v(d)(扩散限制速率)。4. 最佳催化速率(v(opt.),v(2)的最大值)由反应的平衡常数K(eq.)决定;v(2)=v(d)/a,其中[公式:见原文]当假设k(+1)等于k(-3)时,v(opt.)=v(d)/a(min.)。当K(eq.)≥1时,要使a取最小值a(min.),必须k(+2)>>k(-1);当K(eq.)<<1时,只需k(+2)>>K(eq.).k(-1),即即便k(+2)<k(-1),a也可等于a(min.)。当K(eq.)>>1时,v(opt.)=v(d);当K(eq.)=1时,v(opt.)=v(d)/2,当K(eq.)<<1时,v(opt.)=K(eq.).v(d)。5. 该分析以及进化压力的预测效应表明,实际上,最快的酶催化自由可逆反应的速率可能比k(+1)E[S]的值低大约一个数量级,特别是当K(eq.)<1时。6. 现有文献表明,一般而言,已进化出合适的K(m)值以实现高催化速率,但许多k(cat.)值不够大,无法提供最佳催化速率,除非体内k(+1)的值低于其在自由溶液中的值。

相似文献

3
Evolutionary optimization of the catalytic efficiency of enzymes.
Eur J Biochem. 1992 May 15;206(1):289-95. doi: 10.1111/j.1432-1033.1992.tb16927.x.
5
The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis.
Biochemistry. 2012 Sep 25;51(38):7551-68. doi: 10.1021/bi300719b. Epub 2012 Sep 13.
7
Evolutionary optimization of the catalytic effectiveness of an enzyme.
Biochemistry. 1989 Nov 28;28(24):9293-305. doi: 10.1021/bi00450a009.
10
The evolution of enzyme kinetic power.
Biochem J. 1984 Oct 15;223(2):299-303. doi: 10.1042/bj2230299.

引用本文的文献

2
3
The evolution of enzyme kinetic power.
Biochem J. 1984 Oct 15;223(2):299-303. doi: 10.1042/bj2230299.
6
A polyclonal antibody preparation with Michaelian catalytic properties.
Biochem J. 1991 Nov 1;279 ( Pt 3)(Pt 3):871-81. doi: 10.1042/bj2790871.
8
Kinetic barriers under steady-state conditions.
Biochem J. 1992 May 15;284 ( Pt 1)(Pt 1):213-9. doi: 10.1042/bj2840213.
9
Generalized microscopic reversibility, kinetic co-operativity of enzymes and evolution.
Biochem J. 1978 Dec 1;175(3):779-91. doi: 10.1042/bj1750779.

本文引用的文献

1
A Note on the Kinetics of Enzyme Action.
Biochem J. 1925;19(2):338-9. doi: 10.1042/bj0190338.
2
THE inhibition of chymotrypsin by diethyl p-nitrophenyl phosphate.
Biochem J. 1952 Mar;50(5):672-8. doi: 10.1042/bj0500672.
3
The reaction of p-nitrophenyl esters with chymotrypsin and insulin.
Biochem J. 1954 Feb;56(2):288-97. doi: 10.1042/bj0560288.
5
Gluconeogenesis in rat liver cytosol. I. Computer analysis of experimental data.
Comput Biomed Res. 1971 Apr;4(1):65-106. doi: 10.1016/0010-4809(71)90047-4.
6
Catalysis, binding and enzyme-substrate complementarity.
Proc R Soc Lond B Biol Sci. 1974 Nov 19;187(1089):397-407. doi: 10.1098/rspb.1974.0084.
9
The effect of natural selection on enzymic catalysis.
J Mol Biol. 1976 Feb 15;101(1):1-9. doi: 10.1016/0022-2836(76)90062-0.
10
Whither enzyme mechanisms?
FEBS Lett. 1976 Feb 4;62(SUPPL):E53-61. doi: 10.1016/0014-5793(76)80854-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验