Suppr超能文献

纺锤波在丘脑切片模型中的传播。

Propagation of spindle waves in a thalamic slice model.

作者信息

Golomb D, Wang X J, Rinzel J

机构信息

Mathematical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20814, USA.

出版信息

J Neurophysiol. 1996 Feb;75(2):750-69. doi: 10.1152/jn.1996.75.2.750.

Abstract
  1. We study the propagation and dynamics of spindle waves in thalamic slices by developing and analyzing a model of reciprocally coupled populations of excitatory thalamocortical (TC) neurons and inhibitory thalamic reticular (RE) neurons. 2. Each TC neuron has three intrinsic ionic currents: a low-threshold T-type Ca+2 current (ICa-T), a hyperpolarization-activated cation ("sag") current (Ih) and a leak current. Each RE cell also has three currents: ICa-T, a leak current, and a calcium-activated potassium current (IAHP). Isolated TC cells are at rest, can burst when released or depolarized from a hyperpolarized level, and burst rhythmically under moderate constant hyperpolarizing current. Isolated RE cells are at a hyperpolarized resting membrane potential and can burst when depolarized. 3. TC cells excite RE cells with fast alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synapses, and RE cells inhibit TC cells with fast gamma-aminobutyric acid-A (GABAA) and slow GABAB synapses and inhibit each other with GABAA synapses only. GABAB postsynaptic conductances operate far from saturation, and the slow inhibitory postsynaptic potentials (IPSPs) increase with the width of the presynaptic burst. The model network is a one-dimensional cellular array with localized coupling. The synaptic coupling strength decays with the distance between the pre- and postsynaptic cells, either exponentially or as a step function. 4. The "intact" network can oscillate with partial synchrony and a population frequency of approximately 10 Hz. RE cells emit bursts almost at every oscillation cycle, whereas TC cells do so almost at every other cycle. Block of GABAB receptors hardly changes the network behavior. Block of GABAA receptors leads the network to a slowed oscillatory state, where the population frequency is approximately 4 Hz and both RE and TC cells fire unusually long bursts at every cycle and in full synchrony. These results are consistent with the experimental observations of von Krosigk, Bal, and McCormick. We obtain such consistency only when the above assumptions regarding the synaptic dynamics, particularly nonsaturating GABAB synapses, are fulfilled. 5. The slice model has a stable rest state with no neural activity. By initially depolarizing a few neurons at one end of the slice while all the other cells are at rest, a recruitment process may be initiated, and a wavefront of oscillatory activity propagates across the slice. Ahead of the wavefront, neurons are quiescent; neurons behind it oscillate. We find that the wave progresses forward in a lurching manner. TC cells that have just become inhibited must be hyperpolarized for a long enough time before they can fire rebound bursts and recruit RE cells. This step limits the wavefront velocity and may involve a substantial part of the cycle when no cells at the front are depolarized. 6. The wavefront velocity increases linearly with the characteristic spatial length of the connectivity (the footprint length). It increases only gradually with the synaptic strength, logarithmically in the case of an exponential connection function and only slightly for a step connection function. It also decreases gradually with a potassium leak conductance that hyperpolarizes RE cells. 7. To reproduce the experimentally measured wavefront velocity of approximately 1 mm/s, together with other in vitro observations, both the RE-to-TC and the TC-to-RE projections in the model should be spatially localized. The sum of the RE-to-TC and the TC-to-RE synaptic footprint lengths should be on the order of 100 microns. (ABSTRACT TRUNCATED AT 250 WORDS)
摘要
  1. 我们通过建立和分析一个由兴奋性丘脑皮质(TC)神经元和抑制性丘脑网状(RE)神经元相互耦合的群体模型,来研究丘脑切片中纺锤波的传播和动力学。2. 每个TC神经元有三种内在离子电流:低阈值T型Ca+2电流(ICa-T)、超极化激活阳离子(“下垂”)电流(Ih)和泄漏电流。每个RE细胞也有三种电流:ICa-T、泄漏电流和钙激活钾电流(IAHP)。孤立的TC细胞处于静息状态,从超极化水平释放或去极化时会爆发,并在适度恒定的超极化电流下有节律地爆发。孤立的RE细胞处于超极化的静息膜电位,去极化时会爆发。3. TC细胞通过快速的α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)突触兴奋RE细胞,RE细胞通过快速的γ-氨基丁酸-A(GABAA)和缓慢的GABAB突触抑制TC细胞,并且仅通过GABAA突触相互抑制。GABAB突触后电导远未达到饱和,并且缓慢的抑制性突触后电位(IPSPs)随着突触前爆发的宽度增加。模型网络是一个具有局部耦合的一维细胞阵列。突触耦合强度随着突触前和突触后细胞之间的距离呈指数或阶跃函数衰减。4. “完整”网络可以以部分同步和大约10赫兹的群体频率振荡。RE细胞几乎在每个振荡周期都会爆发,而TC细胞几乎每隔一个周期爆发一次。阻断GABAB受体几乎不改变网络行为。阻断GABAA受体导致网络进入缓慢振荡状态,群体频率约为4赫兹,并且RE和TC细胞在每个周期都异常长时间地同步爆发。这些结果与冯·克罗西格克、巴尔和麦科马克的实验观察结果一致。只有当关于突触动力学的上述假设,特别是不饱和的GABAB突触得到满足时,我们才能获得这种一致性。5. 切片模型有一个没有神经活动的稳定静息状态。通过最初使切片一端的一些神经元去极化,而所有其他细胞处于静息状态,可以启动一个募集过程,并且振荡活动的波前会在切片中传播。在波前之前,神经元是静止的;在波前之后神经元振荡。我们发现波以蹒跚的方式向前推进。刚刚被抑制的TC细胞必须超极化足够长的时间,才能触发反弹爆发并募集RE细胞。这一步限制了波前速度,并且可能涉及到没有细胞处于去极化状态的相当一部分周期。6. 波前速度随着连接性的特征空间长度(足迹长度)线性增加。它仅随着突触强度逐渐增加,对于指数连接函数是对数增加,对于阶跃连接函数仅略有增加。它也随着使RE细胞超极化的钾泄漏电导逐渐降低。7. 为了重现实验测量的约1毫米/秒的波前速度以及其他体外观察结果,模型中的RE到TC和TC到RE投射都应该在空间上是局部化的。RE到TC和TC到RE突触足迹长度的总和应该在100微米左右。(摘要截断于250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验