Suppr超能文献

戈登链球菌的α-溶血素是过氧化氢。

The alpha-hemolysin of Streptococcus gordonii is hydrogen peroxide.

作者信息

Barnard J P, Stinson M W

机构信息

Department of Microbiology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo 14214-3000, USA.

出版信息

Infect Immun. 1996 Sep;64(9):3853-7. doi: 10.1128/iai.64.9.3853-3857.1996.

Abstract

The alpha-hemolysin of viridans group streptococci, which causes greening of intact erythrocytes, is a potential virulence factor as well as an important criterion for the laboratory identification of these bacteria; however, it has never been purified and characterized. The alpha-hemolysin of Streptococcus gordonii CH1 caused characteristic shifts in the A403, A430, A578, and A630 of sheep hemoglobin. A spectrophotometric assay was developed and used to monitor purification of alpha-hemolysin during extraction in organic solvents and separation by reverse-phase high-performance liquid chromatography (HPLC). The alpha-hemolysin was identical to hydrogen peroxide with respect to its effects on erythrocyte hemoglobin, oxygen-dependent synthesis by streptococci, insensitivity to proteases, inactivation by catalase, differential solubility, failure to adsorb to ion-exchange chromatography resins, and retention time on a reverse-phase HPLC column. The amount of hydrogen peroxide present in HPLC-fractionated spent culture medium was sufficient to account for all alpha-hemolytic activity observed.

摘要

草绿色链球菌的α-溶血素可使完整红细胞发生溶血,是一种潜在的毒力因子,也是实验室鉴定这些细菌的重要标准;然而,它从未被纯化和鉴定过。戈登链球菌CH1的α-溶血素可使绵羊血红蛋白的A403、A430、A578和A630发生特征性变化。开发了一种分光光度法,用于监测在有机溶剂提取和反相高效液相色谱(HPLC)分离过程中α-溶血素的纯化情况。就其对红细胞血红蛋白的影响、链球菌的氧依赖性合成、对蛋白酶不敏感、被过氧化氢酶灭活、溶解性差异、不吸附于离子交换色谱树脂以及在反相HPLC柱上的保留时间而言,α-溶血素与过氧化氢相同。HPLC分级分离的用过的培养基中存在的过氧化氢量足以解释观察到的所有α-溶血活性。

相似文献

1
The alpha-hemolysin of Streptococcus gordonii is hydrogen peroxide.
Infect Immun. 1996 Sep;64(9):3853-7. doi: 10.1128/iai.64.9.3853-3857.1996.
4
Lysis of erythrocytes by a hemolysin produced by a group B Streptococcus sp.
Infect Immun. 1981 Dec;34(3):787-94. doi: 10.1128/iai.34.3.787-794.1981.
5
Purification and characterization of a hemolysin produced by Vibrio mimicus.
Infect Immun. 1997 May;65(5):1830-5. doi: 10.1128/iai.65.5.1830-1835.1997.
7
Susceptibility of erythrocytes from several animal species to Vibrio vulnificus hemolysin.
FEMS Microbiol Lett. 1989 Oct 15;52(3):251-5. doi: 10.1016/0378-1097(89)90206-1.
8
[alpha-Hemolysin of E. coli].
Zh Mikrobiol Epidemiol Immunobiol. 1976 Jun(6):100-4.

引用本文的文献

1
Hemophore-like proteins of the HmuY family in the oral and gut microbiome: unraveling the mystery of their evolution.
Microbiol Mol Biol Rev. 2024 Mar 27;88(1):e0013123. doi: 10.1128/mmbr.00131-23. Epub 2024 Feb 2.
2
In Situ Raman Analysis of Biofilm Exopolysaccharides Formed in and Commensal Cultures.
Int J Mol Sci. 2023 Apr 3;24(7):6694. doi: 10.3390/ijms24076694.
3
Streptococcus gordonii DL1 evades polymorphonuclear leukocyte-mediated killing via resistance to lysozyme.
PLoS One. 2021 Dec 20;16(12):e0261568. doi: 10.1371/journal.pone.0261568. eCollection 2021.
4
HmuY and GAPDH-Novel Heme Acquisition Strategy in the Oral Microbiome.
Int J Mol Sci. 2020 Jun 10;21(11):4150. doi: 10.3390/ijms21114150.
5
Tipping the Balance: Adaptation in Polymicrobial Environments.
J Fungi (Basel). 2018 Sep 18;4(3):112. doi: 10.3390/jof4030112.
6
Live and let die: Hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome.
Mol Oral Microbiol. 2018 Oct;33(5):337-352. doi: 10.1111/omi.12231. Epub 2018 Jul 15.
7
Macrophage Polarization Alters Postphagocytosis Survivability of the Commensal Streptococcus gordonii.
Infect Immun. 2018 Feb 20;86(3). doi: 10.1128/IAI.00858-17. Print 2018 Mar.
8
Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology.
Microbiol Spectr. 2017 Oct;5(5). doi: 10.1128/microbiolspec.BAD-0012-2016.
9
Decoding molecular interactions in microbial communities.
FEMS Microbiol Rev. 2016 Sep;40(5):648-63. doi: 10.1093/femsre/fuw019. Epub 2016 Jul 13.
10
StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform.
PLoS One. 2016 May 3;11(5):e0151908. doi: 10.1371/journal.pone.0151908. eCollection 2016.

本文引用的文献

1
Production of Hydrogen Peroxide by Bacteria.
Biochem J. 1922;16(4):499-506. doi: 10.1042/bj0160499.
2
THE STREPTOCOCCI.
Bacteriol Rev. 1937 Dec;1(1):3-97. doi: 10.1128/br.1.1.3-97.1937.
4
Identification of hydrogen peroxide as a Streptococcus pneumoniae toxin for rat alveolar epithelial cells.
Infect Immun. 1993 Oct;61(10):4392-7. doi: 10.1128/iai.61.10.4392-4397.1993.
6
Evaluation of the capacity of oral streptococci to produce hydrogen peroxide.
J Med Microbiol. 1993 Dec;39(6):434-9. doi: 10.1099/00222615-39-6-434.
7
Bacteriology of dental infections.
Eur Heart J. 1993 Dec;14 Suppl K:43-50.
8
Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins.
Annu Rev Microbiol. 1993;47:89-115. doi: 10.1146/annurev.mi.47.100193.000513.
9
Salivary mutans streptococci and incidence of caries in preschool children.
Caries Res. 1995;29(2):148-53. doi: 10.1159/000262057.
10
Protease production by Streptococcus sanguis associated with subacute bacterial endocarditis.
Infect Immun. 1982 Dec;38(3):1037-45. doi: 10.1128/iai.38.3.1037-1045.1982.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验