André B, Trochu F, Dansereau J
Département de Génie Mécanique, Ecole Polytechnique, Montréal, Québec, Canada.
Med Biol Eng Comput. 1996 May;34(3):185-91. doi: 10.1007/BF02520072.
In numerous situations, 3-D reconstructions of the spine are represented as curves in space, with the vertebral centroids as control points. Interpolation functions such as splines, polynomials or Fourier series have been used to minimise measurement errors and to perform specific calculations. A more general approach, dual Kriging, is presented which incorporates in a single formulation several methods, such as piece-wise linear interpolation, splines and least square functions as a limit case. To minimise user interaction and to control the different Kriging parameters, a computer program is developed allowing efficient use of these interpolation techniques in a clinical environment. Given different drift and covariance functions, the program determines the most suitable Kriging model for specific spine geometries and controls the amount of smoothing performed on raw data. Validation of the technique is with analytical 3-D curves, where random noise is added to represent reconstruction errors. A maximum absolute mean difference of 1.85 +/- 0.50 mm is found between the analytical and noisy curves smoothed with the Kriging technique for 200 points. Results obtained on actual 3-D reconstructions of scoliotic patients are very promising.
在众多情况下,脊柱的三维重建被表示为空间中的曲线,以椎体中心作为控制点。诸如样条、多项式或傅里叶级数等插值函数已被用于最小化测量误差并进行特定计算。本文提出了一种更通用的方法——对偶克里金法,它在一个单一公式中整合了多种方法,如分段线性插值、样条以及作为极限情况的最小二乘函数。为了最小化用户交互并控制不同的克里金参数,开发了一个计算机程序,以便在临床环境中高效使用这些插值技术。给定不同的漂移和协方差函数,该程序为特定的脊柱几何形状确定最合适的克里金模型,并控制对原始数据进行的平滑量。该技术通过解析三维曲线进行验证,在解析曲线上添加随机噪声以表示重建误差。对于200个点,用克里金技术平滑后的解析曲线与含噪声曲线之间的最大绝对平均差为1.85±0.50毫米。在脊柱侧弯患者的实际三维重建上获得的结果非常有前景。