Suppr超能文献

Entropy-based texture analysis of chromatin structure in advanced prostate cancer.

作者信息

Yogesan K, Jørgensen T, Albregtsen F, Tveter K J, Danielsen H E

机构信息

Department of Pathology, Norwegian Radium Hospital, Oslo, Norway.

出版信息

Cytometry. 1996 Jul 1;24(3):268-76. doi: 10.1002/(SICI)1097-0320(19960701)24:3<268::AID-CYTO10>3.0.CO;2-O.

Abstract

A new texture operator, gray-level entropy matrix (GLEM), was developed, and nine new textural features were extracted from this matrix. These textural features were applied to light microscopy images of nuclei taken from monolayers of advanced prostate cancer cells representing two different prognostic groups: hormone-sensitive (good prognosis) and hormone-resistant (poor prognosis) tumors. A comparison between the classification results obtained from GLEM features and those obtained from standard textural estimators is also discussed. Single features that gave correct classification rates better than 65% were included in a discriminant analysis in order to find the optimal set of features to discriminate between the two prognostic groups in the training data set. The best combination of features includes three GLEM features together with ENTROPY extracted from gray-level cooccurrence matrix, and this combination gave a correct classification rate of 95% using the leaving-one-out technique. The influences of image sharpness and number of cells were also investigated. The features based on entropy or degree of scatter of minute structures can be used to discriminate between hormone-sensitive and hormone-resistant prostate carcinomas.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验