Civelek V N, Deeney J T, Shalosky N J, Tornheim K, Hansford R G, Prentki M, Corkey B E
Diabetes and Metabolism Unit, Evans Department of Medicine, Boston University Medical Center, MA 02118, USA.
Biochem J. 1996 Sep 1;318 ( Pt 2)(Pt 2):615-21. doi: 10.1042/bj3180615.
To gain insight into the regulation of pancreatic beta-cell mitochondrial metabolism, the direct effects on respiration of different mitochondrial substrates, variations in the ATP/ADP ratio and free Ca2+ were examined using isolated mitochondria and permeabilized clonal pancreatic beta-cells (HIT). Respiration from pyruvate was high and not influenced by Ca2+ in State 3 or under various redox states and fixed values of the ATP/ADP ratio; nevertheless, high Ca2+ elevated pyridine nucleotide fluorescence, indicating activation of pyruvate dehydrogenase by Ca2+. Furthermore, in the presence of pyruvate, elevated Ca2+ stimulated CO2 production from pyruvate, increased citrate production and efflux from the mitochondria and inhibited CO2 production from palmitate. The latter observation suggests that beta-cell fatty acid oxidation is not regulated exclusively by malonyl-CoA but also by the mitochondrial redox state. alpha-Glycerophosphate (alpha-GP) oxidation was Ca(2+)-dependent with a half-maximal rate observed at around 300 nM Ca2+. We have recently demonstrated that increases in respiration precede increases in Ca2+ in glucose-stimulated clonal pancreatic beta-cells (HIT), indicating that Ca2+ is not responsible for the initial stimulation of respiration [Civelek, Deeney, Kubik, Schultz, Tornheim and Corkey (1996) Biochem. J. 315, 1015-1019]. It is suggested that respiration is stimulated by increased substrate (alpha-GP and pyruvate) supply together with oscillatory increases in ADP [Nilsson, Schultz, Berggren, Corkey and Tornheim (1996) Biochem. J. 314, 91-94]. The rise in Ca2+, which in itself may not significantly increase net respiration, could have the important functions of (1) activating the alpha-GP shuttle, to maintain an oxidized cytosol and high glycolytic flux; (2) activating pyruvate dehydrogenase, and indirectly pyruvate carboxylase, to sustain production of citrate and hence the putative signal coupling factors, malonyl-CoA and acyl-CoA; and (3) increasing mitochondrial redox state to implement the switch from fatty acid to pyruvate oxidation.
为深入了解胰腺β细胞线粒体代谢的调节机制,我们使用分离的线粒体和透化的克隆胰腺β细胞(HIT细胞),研究了不同线粒体底物对呼吸作用的直接影响、ATP/ADP比值和游离Ca2+的变化。丙酮酸呼吸在状态3下或在各种氧化还原状态及固定的ATP/ADP比值下较高,且不受Ca2+影响;然而,高Ca2+水平会升高吡啶核苷酸荧光,表明Ca2+激活了丙酮酸脱氢酶。此外,在丙酮酸存在的情况下,升高的Ca2+会刺激丙酮酸产生CO2,增加线粒体中柠檬酸的产生和流出,并抑制棕榈酸产生CO2。后一观察结果表明,β细胞脂肪酸氧化不仅受丙二酰辅酶A调节,还受线粒体氧化还原状态调节。α-甘油磷酸(α-GP)氧化是Ca(2+)依赖性的,在约300 nM Ca2+时观察到半数最大速率。我们最近证明,在葡萄糖刺激的克隆胰腺β细胞(HIT细胞)中,呼吸作用的增加先于Ca2+的增加,这表明Ca2+并非呼吸作用初始刺激的原因[Civelek、Deeney、Kubik、Schultz、Tornheim和Corkey(1996年)《生物化学杂志》315卷,1015 - 1019页]。有人提出,呼吸作用是由底物(α-GP和丙酮酸)供应增加以及ADP的振荡增加所刺激的[Nilsson、Schultz、Berggren、Corkey和Tornheim(1996年)《生物化学杂志》314卷,91 - 94页]。Ca2+的升高本身可能不会显著增加净呼吸作用,但可能具有以下重要功能:(1)激活α-GP穿梭,以维持氧化的细胞质和高糖酵解通量;(2)激活丙酮酸脱氢酶,并间接激活丙酮酸羧化酶,以维持柠檬酸的产生,从而维持假定的信号偶联因子丙二酰辅酶A和酰基辅酶A;(3)增加线粒体氧化还原状态,以实现从脂肪酸氧化向丙酮酸氧化的转变。