Dillman J F, Dabney L P, Karki S, Paschal B M, Holzbaur E L, Pfister K K
Cell Biology Department, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
J Neurosci. 1996 Nov 1;16(21):6742-52. doi: 10.1523/JNEUROSCI.16-21-06742.1996.
The neuron moves protein and membrane from the cell body to the synapse and back via fast and slow axonal transport. Little is known about the mechanism of microtubule movement in slow axonal transport, although cytoplasmic dynein, the motor for retrograde fast axonal transport of membranous organelles, has been proposed to also slide microtubules down the axon. We previously showed that most of the cytoplasmic dynein moving in the anterograde direction in the axon is associated with the microfilaments and other proteins of the slow component b (SCb) transport complex. The dynactin complex binds dynein, and it has been suggested that dynactin also associates with microfilaments. We therefore examined the role of dynein and dynactin in slow axonal transport. We find that most of the dynactin is also transported in SCb, including dynactin, which contains the neuron-specific splice variant p135(Glued), which binds dynein but not microtubules. Furthermore, SCb dynein binds dynactin in vitro. SCb dynein, like dynein from brain, binds microtubules in an ATP-sensitive manner, whereas brain dynactin binds microtubules in a salt-dependent manner. Dynactin from SCb does not bind microtubules, indicating that the binding of dynactin to microtubules is regulated and suggesting that the role of SCb dynactin is to bind dynein, not microtubules. These data support a model in which dynactin links the cytoplasmic dynein to the SCb transport complex. Dynein then may interact transiently with microtubules to slide them down the axon at the slower rate of SCa.
神经元通过快速和慢速轴突运输将蛋白质和膜从细胞体运输到突触并返回。尽管细胞质动力蛋白(负责膜性细胞器逆行快速轴突运输的动力蛋白)被认为也能使微管沿轴突向下滑动,但关于慢速轴突运输中微管运动的机制知之甚少。我们之前表明,在轴突中沿顺行方向移动的大多数细胞质动力蛋白与慢成分b(SCb)运输复合体的微丝和其他蛋白质相关。动力蛋白激活蛋白复合体与动力蛋白结合,有人认为动力蛋白激活蛋白也与微丝相关。因此,我们研究了动力蛋白和动力蛋白激活蛋白在慢速轴突运输中的作用。我们发现,大多数动力蛋白激活蛋白也在SCb中运输,包括含有神经元特异性剪接变体p135(Glued)的动力蛋白激活蛋白,该变体结合动力蛋白但不结合微管。此外,SCb动力蛋白在体外与动力蛋白激活蛋白结合。SCb动力蛋白与脑动力蛋白一样,以ATP敏感的方式结合微管,而脑动力蛋白激活蛋白以盐依赖的方式结合微管。来自SCb的动力蛋白激活蛋白不结合微管,这表明动力蛋白激活蛋白与微管的结合受到调控,也表明SCb动力蛋白激活蛋白的作用是结合动力蛋白,而非微管。这些数据支持了一个模型,即动力蛋白激活蛋白将细胞质动力蛋白与SCb运输复合体连接起来。然后,动力蛋白可能与微管短暂相互作用,以SCa的较慢速度使它们沿轴突向下滑动。