Suppr超能文献

单离子扩散的边界条件。

Boundary conditions for- single-ion diffusion.

作者信息

McGill P, Schumaker M F

机构信息

Department of Pure and Applied Mathematics, Washington State University, Pullman, 99164-3113 USA.

出版信息

Biophys J. 1996 Oct;71(4):1723-42. doi: 10.1016/S0006-3495(96)79374-8.

Abstract

We have constructed a theory for diffusion through the pore of a single-ion channel by taking a limit of a random walk around a cycle of states. Similar to Levitt's theory of single-ion diffusion, one obtains boundary conditions for the Nernst-Planck equation that guarantee that the pore is occupied by at most one ion. Two of the terms in the boundary conditions are identical to those given by Levitt. However, the construction gives rise to a third term not found in Levitt's theory. With this term, the channel spends exponentially distributed intervals in the empty state. Ion sample paths have been simulated to help visualize trajectories near the channel entrances, with and without the new term. We use the modified Levitt theory to fit several potential profiles to the conductance data of Russell et al. In particular, we have analyzed the profile for Na+ in gramicidin calculated by Roux and Karplus. The peak-to-peak amplitude of their result must be reduced to at most 35% of its original value to fit the data. But with this reduction, excellent fits are obtained.

摘要

我们通过对围绕一系列状态的随机游走取极限,构建了一个关于单离子通道孔隙中扩散的理论。类似于莱维特的单离子扩散理论,我们得到了能斯特 - 普朗克方程的边界条件,这些条件保证孔隙中最多只占据一个离子。边界条件中的两项与莱维特给出的相同。然而,这种构建产生了一个莱维特理论中未发现的第三项。有了这项,通道在空态下花费指数分布的时间间隔。我们模拟了离子样本路径,以帮助可视化有无新项时通道入口附近的轨迹。我们使用修正后的莱维特理论将几种势能分布拟合到拉塞尔等人的电导数据上。特别是,我们分析了鲁克斯和卡尔普斯计算的短杆菌肽中钠离子的分布。为了拟合数据,他们结果的峰 - 峰幅度必须最多降低到其原始值的35%。但经过这种降低后,能得到很好的拟合。

相似文献

1
Boundary conditions for- single-ion diffusion.
Biophys J. 1996 Oct;71(4):1723-42. doi: 10.1016/S0006-3495(96)79374-8.
3
Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
Biophys J. 1997 Jan;72(1):97-116. doi: 10.1016/S0006-3495(97)78650-8.
4
Water transport and ion-water interaction in the gramicidin channel.
Biophys J. 1981 Aug;35(2):501-8. doi: 10.1016/S0006-3495(81)84805-9.
6
Ion flow in the bath and flux interactions between channels.
Biophys J. 1994 Apr;66(4):989-95. doi: 10.1016/S0006-3495(94)80880-X.
8
Physical descriptions of experimental selectivity measurements in ion channels.
Eur Biophys J. 2002 Oct;31(6):454-66. doi: 10.1007/s00249-002-0239-x. Epub 2002 Jul 16.
9
Framework model for single proton conduction through gramicidin.
Biophys J. 2001 Jan;80(1):12-30. doi: 10.1016/S0006-3495(01)75992-9.
10

引用本文的文献

2
Influence of protein flexibility on the electrostatic energy landscape in gramicidin A.
Eur Biophys J. 2005 May;34(3):208-16. doi: 10.1007/s00249-004-0442-z. Epub 2004 Nov 5.
3
Ionic permeation free energy in gramicidin: a semimicroscopic perspective.
Biophys J. 2004 Jun;86(6):3529-41. doi: 10.1529/biophysj.103.039214.
4
A microscopic view of ion conduction through the K+ channel.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8644-8. doi: 10.1073/pnas.1431750100. Epub 2003 Jul 1.
5
The implementation of slab geometry for membrane-channel molecular dynamics simulations.
Biophys J. 2003 Jul;85(1):97-107. doi: 10.1016/S0006-3495(03)74458-0.
6
Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
Biophys J. 2002 Sep;83(3):1348-60. doi: 10.1016/S0006-3495(02)73905-2.
7
Framework model for single proton conduction through gramicidin.
Biophys J. 2001 Jan;80(1):12-30. doi: 10.1016/S0006-3495(01)75992-9.
8
A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.
Biophys J. 2000 Aug;79(2):788-801. doi: 10.1016/S0006-3495(00)76336-3.
9
Statistical mechanical equilibrium theory of selective ion channels.
Biophys J. 1999 Jul;77(1):139-53. doi: 10.1016/S0006-3495(99)76878-5.
10
(In)validity of the constant field and constant currents assumptions in theories of ion transport.
Biophys J. 1999 Feb;76(2):768-81. doi: 10.1016/S0006-3495(99)77242-5.

本文引用的文献

1
The potassium permeability of a giant nerve fibre.
J Physiol. 1955 Apr 28;128(1):61-88. doi: 10.1113/jphysiol.1955.sp005291.
2
The nature of ion and water barrier crossings in a simulated ion channel.
Biophys J. 1993 Jan;64(1):98-109. doi: 10.1016/S0006-3495(93)81344-4.
3
Orientation independence of single-vacancy and single-ion permeability ratios.
Biophys J. 1995 Jul;69(1):84-93. doi: 10.1016/S0006-3495(95)79878-2.
4
Sodium in gramicidin: an example of a permion.
Biophys J. 1995 Mar;68(3):906-24. doi: 10.1016/S0006-3495(95)80267-5.
5
Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy.
Biophys J. 1995 Mar;68(3):876-92. doi: 10.1016/S0006-3495(95)80264-X.
6
Electrostatic modeling of ion pores. Energy barriers and electric field profiles.
Biophys J. 1982 Aug;39(2):157-64. doi: 10.1016/S0006-3495(82)84503-7.
8
Ion transport through pores: a rate-theory analysis.
Biochim Biophys Acta. 1973 Jul 6;311(3):423-41. doi: 10.1016/0005-2736(73)90323-4.
9
Symmetry and asymmetry of permeation through toxin-modified Na+ channels.
Biophys J. 1988 Nov;54(5):767-76. doi: 10.1016/S0006-3495(88)83014-5.
10
Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A.
Biophys J. 1989 Jul;56(1):171-82. doi: 10.1016/S0006-3495(89)82662-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验