Liu Y, Sonek G J, Berns M W, Tromberg B J
Department of Electrical and Computer Engineering, University of California, Irvine 92717, USA.
Biophys J. 1996 Oct;71(4):2158-67. doi: 10.1016/S0006-3495(96)79417-1.
We report the results of microfluorometric measurements of physiological changes in optically trapped immotile Chinese hamster ovary cells (CHOs) and motile human sperm cells under continuous-wave (CW) and pulsed-mode trapping conditions at 1064 nm. The fluorescence spectra derived from the exogenous fluorescent probes laurdan, acridine orange, propidium iodide, and Snarf are used to assess the effects of optical confinement with respect to temperature, DNA structure, cell viability, and intracellular pH, respectively. In the latter three cases, fluorescence is excited via a two-photon process, using a CW laser trap as the fluorescence excitation source. An average temperature increase of < 0.1 +/- 0.30 degrees C/100 mW is measured for cells when held stationary with CW optical tweezers at powers of up to 400 mW. The same trapping conditions do not appear to alter DNA structure or cellular pH. In contrast, a pulsed 1064-nm laser trap (100-ns pulses at 40 microJ/pulse and average power of 40 mW) produced significant fluorescence spectral alterations in acridine orange, perhaps because of thermally induced DNA structural changes or laser-induced multiphoton processes. The techniques and results presented herein demonstrate the ability to perform in situ monitoring of cellular physiology during CW and pulsed laser trapping, and should prove useful in studying mechanisms by which optical tweezers and microbeams perturb metabolic function and cellular viability.
我们报告了在1064nm连续波(CW)和脉冲模式捕获条件下,对光学捕获的静止中国仓鼠卵巢细胞(CHO)和活动人类精子细胞生理变化进行微荧光测量的结果。分别使用源自外源性荧光探针劳丹、吖啶橙、碘化丙啶和Snarf的荧光光谱来评估光学限制对温度、DNA结构、细胞活力和细胞内pH的影响。在后三种情况下,使用连续波激光阱作为荧光激发源,通过双光子过程激发荧光。当用功率高达400mW的连续波光镊固定细胞时,测得细胞平均温度升高<0.1±0.30℃/100mW。相同的捕获条件似乎不会改变DNA结构或细胞pH。相比之下,脉冲1064nm激光阱(40μJ/脉冲、100ns脉冲且平均功率为40mW)在吖啶橙中产生了显著的荧光光谱变化,这可能是由于热诱导的DNA结构变化或激光诱导的多光子过程。本文介绍的技术和结果证明了在连续波和脉冲激光捕获过程中对细胞生理进行原位监测的能力,并且在研究光镊和微束扰乱代谢功能和细胞活力的机制方面应该会很有用。