Suppr超能文献

在鱿鱼轴突囊泡在微管上运输过程中,正端马达蛋白会压倒负端马达蛋白。

Plus-end motors override minus-end motors during transport of squid axon vesicles on microtubules.

作者信息

Muresan V, Godek C P, Reese T S, Schnapp B J

机构信息

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

J Cell Biol. 1996 Oct;135(2):383-97. doi: 10.1083/jcb.135.2.383.

Abstract

Plus- and minus-end vesicle populations from squid axoplasm were isolated from each other by selective extraction of the minus-end vesicle motor followed by 5'-adenylyl imidodiphosphate (AMP-PNP)-induced microtubule affinity purification of the plus-end vesicles. In the presence of cytosol containing both plus- and minus-end motors, the isolated populations moved strictly in opposite directions along microtubules in vitro. Remarkably, when treated with trypsin before incubation with cytosol, purified plus-end vesicles moved exclusively to microtubule minus ends instead of moving in the normal plus-end direction. This reversal in the direction of movement of trypsinized plus-end vesicles, in light of further observation that cytosol promotes primarily minus-end movement of liposomes, suggests that the machinery for cytoplasmic dynein-driven, minus-end vesicle movement can establish a functional interaction with the lipid bilayers of both vesicle populations. The additional finding that kinesin overrides cytoplasmic dynein when both are bound to bead surfaces indicates that the direction of vesicle movement could be regulated simply by the presence or absence of a tightly bound, plus-end kinesin motor; being processive and tightly bound, the kinesin motor would override the activity of cytoplasmic dynein because the latter is weakly bound to vesicles and less processive. In support of this model, it was found that (a) only plus-end vesicles copurified with tightly bound kinesin motors; and (b) both plus- and minus-end vesicles bound cytoplasmic dynein from cytosol.

摘要

通过选择性提取负端囊泡动力蛋白,随后用5'-腺苷酰亚胺二磷酸(AMP-PNP)诱导正端囊泡进行微管亲和纯化,将鱿鱼轴浆中的正端和负端囊泡群体彼此分离。在含有正端和负端动力蛋白的胞质溶胶存在下,分离出的群体在体外沿着微管严格向相反方向移动。值得注意的是,在用胰蛋白酶处理后再与胞质溶胶孵育时,纯化的正端囊泡只向微管负端移动,而不是沿正常的正端方向移动。鉴于进一步观察到胞质溶胶主要促进脂质体的负端移动,胰蛋白酶处理后的正端囊泡移动方向的这种逆转表明,细胞质动力蛋白驱动的负端囊泡移动机制可以与两种囊泡群体的脂质双层建立功能相互作用。另外的发现是,当驱动蛋白和细胞质动力蛋白都结合在珠子表面时,驱动蛋白会取代细胞质动力蛋白,这表明囊泡移动的方向可以简单地通过紧密结合的正端驱动蛋白动力蛋白的存在与否来调节;由于驱动蛋白动力蛋白具有持续性且紧密结合,它会取代细胞质动力蛋白的活性,因为后者与囊泡的结合较弱且持续性较差。为支持该模型,研究发现:(a)只有正端囊泡与紧密结合的驱动蛋白动力蛋白共纯化;(b)正端和负端囊泡都从胞质溶胶中结合了细胞质动力蛋白。

相似文献

引用本文的文献

2
Recycling of kinesin-1 motors by diffusion after transport.运输后通过扩散回收动力蛋白-1 分子马达。
PLoS One. 2013 Sep 30;8(9):e76081. doi: 10.1371/journal.pone.0076081. eCollection 2013.
5
No conventional function for the conventional kinesin?传统驱动蛋白没有传统功能?
Traffic. 2008 Nov;9(11):1823-7. doi: 10.1111/j.1600-0854.2008.00818.x. Epub 2008 Aug 19.
7
Cargo selection by specific kinesin light chain 1 isoforms.特定驱动蛋白轻链1亚型对货物的选择
EMBO J. 2006 Nov 29;25(23):5457-68. doi: 10.1038/sj.emboj.7601427. Epub 2006 Nov 9.
8
Calsyntenin-1 docks vesicular cargo to kinesin-1.钙黏连蛋白-1将囊泡货物对接至驱动蛋白-1。
Mol Biol Cell. 2006 Aug;17(8):3651-63. doi: 10.1091/mbc.e06-02-0112. Epub 2006 Jun 7.

本文引用的文献

1
Regulation of kinesin-directed movements.驱动蛋白定向运动的调控。
Trends Cell Biol. 1995 Apr;5(4):165-8. doi: 10.1016/s0962-8924(00)88981-3.
5
Targeting of motor proteins.驱动蛋白的靶向作用。
Science. 1996 Mar 15;271(5255):1539-44. doi: 10.1126/science.271.5255.1539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验