Suppr超能文献

机组资源管理:一项比较固定机组与编队机组的模拟器研究。

Crew resource management: a simulator study comparing fixed versus formed aircrews.

作者信息

Barker J M, Clothier C C, Woody J R, McKinney E H, Brown J L

机构信息

Department of Behavioral Sciences, United States Air Force Academy, CO 80840-6228, USA.

出版信息

Aviat Space Environ Med. 1996 Jan;67(1):3-7.

PMID:8929198
Abstract

BACKGROUND

Most airline and military transport planes are flown by crews that have been teamed together for a short amount of time before disbanding and becoming part of a different crew (formed crew concept). Some military operations use a fixed crew concept, pairing crewmembers together for an indefinite period. This research investigated the effect of crew formation policy on aircrew performance during missions in U.S. Air Force KC-135 (tanker) simulators.

METHOD

The performance of fixed aircrews is compared to formed aircrews flying the same simulator mission scenario, which included an in-flight emergency. Cockpit resource management (CRM) behavioral data and error data were collected by trained observers for 17 crews (9 fixed and 8 formed).

RESULTS

The results show that fixed crews committed more minor errors (4.4 per mission) than formed crews (2.6 per mission), t(14) = 2.32, p = 0.036. No differences were found concerning major errors or CRM behavioral indicators.

CONCLUSIONS

The results suggest the possibility of a "familiarity decline," where aircrew performance declines when crewmembers become too familiar with each other and may affect flight safety.

摘要

背景

大多数航空公司和军事运输机由机组人员驾驶,这些机组人员在解散并成为不同机组(组建机组概念)的一部分之前,仅在一起合作很短一段时间。一些军事行动采用固定机组概念,将机组人员长期配对在一起。本研究调查了机组人员组建政策对美国空军KC - 135(加油机)模拟器任务期间机组人员表现的影响。

方法

将固定机组的表现与执行相同模拟器任务场景(包括飞行中的紧急情况)的组建机组进行比较。训练有素的观察员收集了17个机组(9个固定机组和8个组建机组)的驾驶舱资源管理(CRM)行为数据和错误数据。

结果

结果表明,固定机组犯下的小错误(每次任务4.4个)比组建机组(每次任务2.6个)更多,t(14) = 2.32,p = 0.036。在重大错误或CRM行为指标方面未发现差异。

结论

结果表明存在“熟悉度下降”的可能性,即当机组人员彼此过于熟悉时,机组人员的表现会下降,这可能会影响飞行安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验