Suppr超能文献

动物饲料中的β-激动剂。IV:一种候选参考确证方法的比对研究。

Beta-agonists in animal feed. IV: Intercomparison study of a candidate reference confirmatory method.

作者信息

Leyssens L, Noben J P, Courtheyn D, Boenke A

机构信息

Dr. L. Willems-Instituut Diepenbeek, Belgium.

出版信息

Food Addit Contam. 1996 Nov-Dec;13(8):883-95. doi: 10.1080/02652039609374477.

Abstract

The objective of this intercomparison study was to evaluate the qualitative aspects and the interlaboratory performance of the method selected to be recommended as the official Community reference confirmatory method for the analysis of beta-agonists in animal feed. This method contains three possible options, i.e. a narrow range method for clenbuterol-type compounds based either on HPLC or on GCMS as the end-determination step and a broad range GCMS method for clenbuterol-type and salbutamol-type-beta-agonists. Three types of animal feed materials were provided: a series of blank materials and two series of materials contaminated with clenbuterol and salbutamol at a low and a high level, respectively. The results showed that the majority of the laboratories were able to identify blank, low and high level materials both for clenbuterol and salbutamol. For clenbuterol the narrow range GCMS method has been shown to be the most satisfactory. Although the participants had comments on the purity of the extracts obtained by means of the broad range method it was found appropriate as a multi-residue method which is able to measure simultaneously clenbuterol-type and salbutamol-type beta-agonists. A statistical evaluation of the quantitative measurement was also performed.

摘要

本次比对研究的目的是评估被选定推荐作为动物饲料中β-激动剂分析官方共同体参考确证方法的该方法的定性方面和实验室间性能。该方法包含三种可能的选项,即基于高效液相色谱法(HPLC)或气相色谱-质谱联用仪(GCMS)作为最终测定步骤的克伦特罗类化合物窄范围方法,以及用于克伦特罗类和沙丁胺醇类β-激动剂的宽范围GCMS方法。提供了三种类型的动物饲料原料:一系列空白原料以及分别被低水平和高水平克伦特罗及沙丁胺醇污染的两个系列原料。结果表明,大多数实验室能够识别出克伦特罗和沙丁胺醇的空白、低水平和高水平原料。对于克伦特罗,窄范围GCMS方法已被证明是最令人满意的。尽管参与者对通过宽范围方法获得的提取物的纯度有意见,但该方法作为一种能够同时测定克伦特罗类和沙丁胺醇类β-激动剂的多残留方法被认为是合适的。还对定量测量进行了统计评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验