Lin Huazhen, Fei Zhe, Li Yi
Center of Statistical Research, School of Statistics, Southwestern University of Finance and Economics, Chengdu, Sichuan, China.
Department of Biostatistics, University of Michigan, USA.
Scand Stat Theory Appl. 2016 Sep;43(3):649-663. doi: 10.1111/sjos.12196. Epub 2015 Nov 9.
The timing of a time-dependent treatment-e.g., when to perform a kidney transplantation-is an important factor for evaluating treatment efficacy. A naïve comparison between the treated and untreated groups, while ignoring the timing of treatment, typically yields biased results that might favor the treated group because only patients who survive long enough will get treated. On the other hand, studying the effect of a time-dependent treatment is often complex, as it involves modeling treatment history and accounting for the possible time-varying nature of the treatment effect. We propose a varying-coefficient Cox model that investigates the efficacy of a time-dependent treatment by utilizing a global partial likelihood, which renders appealing statistical properties, including consistency, asymptotic normality and semiparametric efficiency. Extensive simulations verify the finite sample performance, and we apply the proposed method to study the efficacy of kidney transplantation for end-stage renal disease patients in the U.S. Scientific Registry of Transplant Recipients (SRTR).
时间依赖性治疗的时机(例如何时进行肾脏移植)是评估治疗效果的一个重要因素。在忽略治疗时机的情况下,直接对治疗组和未治疗组进行比较,通常会产生有偏差的结果,可能会偏向治疗组,因为只有存活足够长时间的患者才会接受治疗。另一方面,研究时间依赖性治疗的效果通常很复杂,因为它涉及对治疗历史进行建模,并考虑治疗效果可能随时间变化的性质。我们提出了一种变系数Cox模型,该模型通过利用全局偏似然来研究时间依赖性治疗的效果,这具有吸引人的统计性质,包括一致性、渐近正态性和半参数效率。大量模拟验证了有限样本性能,并且我们将所提出的方法应用于美国器官移植受者科学登记处(SRTR)中研究终末期肾病患者肾脏移植的效果。