Suppr超能文献

细菌鞭毛马达接近失速时产生的扭矩。

Torque generated by the bacterial flagellar motor close to stall.

作者信息

Berry R M, Berg H C

机构信息

Rowland Institute for Science, Cambridge, Massachusetts 02142, USA.

出版信息

Biophys J. 1996 Dec;71(6):3501-10. doi: 10.1016/S0006-3495(96)79545-0.

Abstract

In earlier work in which electrorotation was used to apply external torque to tethered cells of the bacterium Escherichia coli, it was found that the torque required to force flagellar motors backward was considerably larger than the torque required to stop them. That is, there appeared to be substantial barrier to backward rotation. Here, we show that in most, possibly all, cases this barrier is an artifact due to angular variation of the torque applied by electrorotation, of the motor torque, or both; the motor torque appears to be independent to speed or to vary linearly with speed up to speeds of tens of Hertz, in either direction. However, motors often break catastrophically when driven backward, so backward rotation is not equivalent to forward rotation. Also, cells can rotate backward while stalled, either in randomly timed jumps of 180 degrees or very slowly and smoothly. When cells rotate slowly and smoothly backward, the motor takes several seconds to recover after electrorotation is stopped, suggesting that some form of reversible damage has occurred. These findings do not affect the interpretation of electrorotation experiments in which motors are driven rapidly forward.

摘要

在早期的一项工作中,人们利用旋转电泳对大肠杆菌的束缚细胞施加外部扭矩,结果发现,迫使鞭毛马达向后旋转所需的扭矩比使其停止所需的扭矩大得多。也就是说,向后旋转似乎存在很大的障碍。在此,我们表明,在大多数(可能是所有)情况下,这种障碍是一种假象,是由旋转电泳施加的扭矩、马达扭矩或两者的角度变化引起的;马达扭矩似乎与速度无关,或者在高达数十赫兹的速度范围内随速度线性变化,无论旋转方向如何。然而,马达在向后驱动时常常会灾难性地损坏,因此向后旋转与向前旋转并不等效。此外,细胞在停滞时可以向后旋转,要么以180度的随机定时跳跃方式,要么非常缓慢且平稳地旋转。当细胞缓慢且平稳地向后旋转时,旋转电泳停止后马达需要几秒钟才能恢复,这表明发生了某种形式的可逆损伤。这些发现并不影响对马达快速向前驱动的旋转电泳实验的解释。

相似文献

4
Torque generated by the flagellar motor of Escherichia coli.大肠杆菌鞭毛马达产生的扭矩。
Biophys J. 1993 Nov;65(5):2201-16. doi: 10.1016/S0006-3495(93)81278-5.
8
On torque and tumbling in swimming Escherichia coli.关于游泳大肠杆菌中的扭矩和翻滚
J Bacteriol. 2007 Mar;189(5):1756-64. doi: 10.1128/JB.01501-06. Epub 2006 Dec 22.
9
10
Torque generation by the flagellar rotary motor.鞭毛旋转马达产生的扭矩。
Biophys J. 1995 Apr;68(4 Suppl):163S-166S; discussion 166S-167S.

引用本文的文献

3
Load-dependent adaptation near zero load in the bacterial flagellar motor.细菌鞭毛马达在近零负载下的负载相关适应性。
J R Soc Interface. 2019 Oct 31;16(159):20190300. doi: 10.1098/rsif.2019.0300. Epub 2019 Oct 2.
5
Proposed model for the flagellar rotary motor with shear stress transmission.具有剪切应力传递的鞭毛旋转马达的模型设想。
Biophysics (Nagoya-shi). 2012 Dec 5;8:151-62. doi: 10.2142/biophysics.8.151. eCollection 2012.
8
Shear stress transmission model for the flagellar rotary motor.鞭毛旋转马达的切应力传递模型。
Int J Mol Sci. 2008 Sep;9(9):1595-1620. doi: 10.3390/ijms9091595. Epub 2008 Sep 1.
9
A programmable optical angle clamp for rotary molecular motors.一种用于旋转分子马达的可编程光学角度夹具。
Biophys J. 2007 Jul 1;93(1):264-75. doi: 10.1529/biophysj.106.091074. Epub 2007 Apr 13.
10
Force and velocity of mycoplasma mobile gliding.运动支原体滑行的力与速度。
J Bacteriol. 2002 Apr;184(7):1827-31. doi: 10.1128/JB.184.7.1827-1831.2002.

本文引用的文献

1
Torque generated by the flagellar motor of Escherichia coli.大肠杆菌鞭毛马达产生的扭矩。
Biophys J. 1993 Nov;65(5):2201-16. doi: 10.1016/S0006-3495(93)81278-5.
7
Restoration of torque in defective flagellar motors.修复有缺陷的鞭毛马达中的扭矩。
Science. 1988 Dec 23;242(4886):1678-81. doi: 10.1126/science.2849208.
10
Cell envelope associations of Aquaspirillum serpens flagella.蛇形水生螺菌鞭毛与细胞包膜的关联
J Bacteriol. 1978 Dec;136(3):1037-49. doi: 10.1128/jb.136.3.1037-1049.1978.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验