Yaron S, Shimon L J, Frolow F, Lamed R, Morag E, Shoham Y, Bayer E A
Department of Food Engineering and Biotechnology, Technion-Israel Institute of Technology, Haifa, Israel.
J Biotechnol. 1996 Nov 15;51(3):243-9. doi: 10.1016/s0168-1656(96)01602-1.
The cellulosome of the cellulolytic bacterium, Clostridium thermocellum, is a multi-enzyme complex in which the enzymatic (cellulolytic) subunits are attached to a unique nonhydrolytic subunit called scaffoldin. The attachment is mediated by two mutually interacting domains: namely multiple cohesin domains on the scaffoldin subunit and a dockerin domain on each of the enzymatic subunits. Knowledge of the three-dimensional structure of each of the interacting components would be critical to a better understanding of the cohesin-dockerin interaction at the molecular level. In this report, we describe the purification of one of the nine cohesin domains of the scaffoldin subunit from C. thermocellum. A DNA segment containing the cohesin 2 sequence was fused to a hexa-histidine tag, and the resultant construct was expressed in Escherichia coli. The expressed peptide was efficiently isolated by metal-chelate affinity chromatography. The purified recombinant form of the cohesin was crystallized pending determination of its structure.