Carvalho Ana L, Dias Fernando M V, Prates José A M, Nagy Tibor, Gilbert Harry J, Davies Gideon J, Ferreira Luís M A, Romão Maria J, Fontes Carlos M G A
Rede de Química e Tecnologia/Centro de Química Fina e Biotecnologia (REQUIMTE/CQFB), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13809-14. doi: 10.1073/pnas.1936124100. Epub 2003 Nov 17.
The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the "cellulosome," for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose "cohesin" domains interact with corresponding "dockerin" domains of the enzymes. Here we report the structure of the cohesin-dockerin complex from Clostridium thermocellum at 2.2-A resolution. The data show that the beta-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop-helix-helix-loop-helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both "halves" of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of "polycellulosomes." The structure provides an explanation for the lack of cross-species recognition between cohesin-dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies.
利用有组织的超分子组装体来利用紧密接近所提供的协同相互作用,无论是用于酶促合成还是用于难降解底物的降解,都是细胞生物学中一个新兴的主题。厌氧细菌利用一种称为“纤维小体”的多蛋白复合物来有效降解植物细胞壁。这个兆道尔顿级别的催化机器在一个多面的分子支架上组织一个酶联合体,其“黏附素”结构域与酶的相应“坞站蛋白”结构域相互作用。在此,我们报告了嗜热栖热菌黏附素 - 坞站蛋白复合物在2.2埃分辨率下的结构。数据表明,β折叠黏附素结构域主要与坞站蛋白的一个螺旋相互作用。尽管黏附素的结构基本保持不变,但与溶液结构相比,坞站蛋白的环 - 螺旋 - 环 - 螺旋基序发生了构象变化并有序排列,尽管其与两个钙离子的经典12个残基的EF手型配位得以保留。值得注意的是,坞站蛋白内部的序列重复表现为近乎完美的内部二重对称,这表明坞站蛋白的两个“半部分”可能以类似的方式与黏附素相互作用,从而为纤维小体提供了更高层次的结构,并可能解释了“多纤维小体”的存在。该结构解释了黏附素 - 坞站蛋白对之间缺乏跨物种识别的原因,从而为这些催化组装体的合理设计、构建和利用提供了蓝图。