Thumm G, Götz F
Mikrobielle Genetik, University Tübingen, Germany.
Mol Microbiol. 1997 Mar;23(6):1251-65. doi: 10.1046/j.1365-2958.1997.2911657.x.
Lysostaphin is an extracellular glycylglycine endopeptidase produced by Staphylococcus simulans biovar staphylolyticus ATCC1362 that lyses staphylococcal cells by hydrolysing the polyglycine interpeptide bridges of the peptidoglycan. Renewed analysis of the sequence of the lysostaphin gene (lss), and the sequencing of the amino-terminus of purified prolysostaphin and of mature lysostaphin revealed that lysostaphin is organized as a preproprotein of 493 amino acids (aa), with a signal peptide consisting of 36 aa, a propeptide of 211 aa from which 195 aa are organized in 15 tandem repeats of 13 aa length, and a mature protein of 246 aa. Prolysostaphin is processed in the culture supernatant of S. simulans biovar staphylolyticus by an extracellular cysteine protease. Although prolysostaphin was staphylolytically active, the mature lysostaphin was about 4.5-fold more active. The controlled expression in Staphylococcus carnosus of lss and lss with deletions in the prepropeptide region indicated that the tandem repeats of the propeptide are not necessary for protein export or activation of Lss, but keep Lss in a less active state. Intracellularly expressed pro- and mature lysostaphin exert staphylolytic activity in cell-free extracts, but do not affect growth of the corresponding clones. We characterized a lysostaphin immunity factor gene (lif) which is located in the opposite direction to lss. The expression of lif in S. carnosus led to an increase in the serine/glycine ratio of the interpeptide bridges of peptidoglycan from 2 to 35%, suggesting that lysostaphin immunity depends on serine incorporation into the interpeptide bridge. If, in addition to lif, lss is co-expressed the serine/glycine ratio is further increased to 58%, suggesting that Lss selects for optimal serine incorporation. Lif shows similarity to FemA and FemB proteins, which are involved in the biosynthesis of the glycine interpeptide bridge of staphylococcal peptidoglycan. In contrast to that of Lif, the production of FemA and FemB in S. carnosus does not cause lysostaphin immunity. The putative tRNASer gene located downstream of lss had no recognizable influence on lysostaphin immunity. lss and lif are flanked by insertion sequences, suggesting that S. simulans biovar staphylolyticus received lif and lss by horizontal gene transfer.
溶葡萄球菌酶是由模仿葡萄球菌溶菌生物变种ATCC1362产生的一种细胞外甘氨酰甘氨酸内肽酶,它通过水解肽聚糖的聚甘氨酸肽间桥来裂解葡萄球菌细胞。对溶葡萄球菌酶基因(lss)序列的重新分析,以及对纯化的前溶葡萄球菌酶和成熟溶葡萄球菌酶氨基末端的测序表明,溶葡萄球菌酶被组织成一个由493个氨基酸(aa)组成的前原蛋白,其中信号肽由36个aa组成,前肽由211个aa组成,其中195个aa被组织成15个长度为13个aa的串联重复序列,成熟蛋白由246个aa组成。前溶葡萄球菌酶在模仿葡萄球菌溶菌生物变种的培养上清液中被一种细胞外半胱氨酸蛋白酶加工。尽管前溶葡萄球菌酶具有溶葡萄球菌活性,但成熟的溶葡萄球菌酶活性约高4.5倍。在肉葡萄球菌中对lss和在前原肽区域有缺失的lss进行可控表达表明,前肽的串联重复序列对于蛋白质输出或Lss的激活不是必需的,但会使Lss处于活性较低的状态。细胞内表达的前溶葡萄球菌酶和成熟溶葡萄球菌酶在无细胞提取物中发挥溶葡萄球菌活性,但不影响相应克隆的生长。我们鉴定了一个与lss方向相反的溶葡萄球菌酶免疫因子基因(lif)。lif在肉葡萄球菌中的表达导致肽聚糖肽间桥中丝氨酸/甘氨酸比例从2%增加到35%,这表明溶葡萄球菌酶免疫取决于丝氨酸掺入肽间桥。如果除了lif之外,lss也共表达,丝氨酸/甘氨酸比例会进一步增加到58%,这表明Lss选择最佳的丝氨酸掺入。Lif与FemA和FemB蛋白相似,它们参与葡萄球菌肽聚糖甘氨酸肽间桥的生物合成。与Lif不同,FemA和FemB在肉葡萄球菌中的产生不会引起溶葡萄球菌酶免疫。位于lss下游的假定的tRNASer基因对溶葡萄球菌酶免疫没有可识别影响。lss和lif两侧是插入序列,这表明模仿葡萄球菌溶菌生物变种通过水平基因转移获得了lif和lss。