Dolmage T E, Goldstein R S
Department of Medicine, University of Toronto, West Park Hospital, Ontario, Canada.
Chest. 1997 Apr;111(4):948-54. doi: 10.1378/chest.111.4.948.
This study determined whether proportional assist ventilation (PAV) applied during constant power submaximal exercise could enable individuals with severe but stable COPD to increase their exercise tolerance.
Prospective controlled study having a randomized order of intervention.
Pulmonary function exercise laboratory.
Ten subjects with severe stable COPD (mean [SD]: age=59 [6] years; FEV1=29 [7]% predicted; FEV1/FVC=33 [7]%; thoracic gas volume=201 [47]% predicted; diffusion of carbon monoxide=36 [10]% predicted; PaO2=76 [8] mm Hg; and PaCO2=41 [4] mm Hg).
Each subject completed five sessions of cycling at 60 to 70% of their maximum power. The sessions differed only in the type of inspiratory assist: (1) baseline (airway pressure [Paw]=0 cm H2O); (2) proportional assist ventilation (PAV) (volume assist=6 [3] cm H2O/L, flow assist=3 [1] cm H2O/L/s); (3) continuous positive airway pressure (CPAP) (5 [2] cm H2O); (4) PAV+CPAP; and (5) sham (Paw=0 cm H2O).
Dyspnea was measured using a modified Borg scale. Subjects reached the same level of dyspnea during all sessions but only PAV+CPAP significantly (p<0.05) increased exercise tolerance (12.88 [8.74] min) vs the sham session (6.60 [3.12] min). Exercise time during the PAV and CPAP sessions was 7.10 [2.83] and 8.26 [5.54] min, respectively. Minute ventilation increased during exercise but only during PAV+CPAP was the end exercise minute ventilation greater than the unassisted baseline end exercise minute ventilation (36.2 [6.7] vs 26.6 [6.4] L/min, respectively; p<0.05).
In this study, PAV+CPAP provided ventilatory assistance during cycle exercise sufficient to increase the endurance time. It is now appropriate to evaluate whether PAV+CPAP will facilitate exercise training.
本研究旨在确定在恒功率亚极量运动期间应用比例辅助通气(PAV)是否能使重度但病情稳定的慢性阻塞性肺疾病(COPD)患者提高运动耐力。
采用随机干预顺序的前瞻性对照研究。
肺功能运动实验室。
10名重度稳定COPD患者(平均[标准差]:年龄=59[6]岁;第1秒用力呼气容积(FEV1)=预计值的29[7]%;FEV1/用力肺活量(FVC)=33[7]%;肺总量=预计值的201[47]%;一氧化碳弥散量=预计值的36[10]%;动脉血氧分压(PaO2)=76[8]毫米汞柱;动脉血二氧化碳分压(PaCO2)=41[4]毫米汞柱)。
每位受试者以其最大功率的60%至70%完成5次骑行训练。各训练之间的差异仅在于吸气辅助的类型:(1)基线(气道压力[Paw]=0厘米水柱);(2)比例辅助通气(PAV)(容积辅助=6[3]厘米水柱/升,流量辅助=3[1]厘米水柱/升/秒);(3)持续气道正压通气(CPAP)(5[2]厘米水柱);(4)PAV+CPAP;以及(5)假干预(Paw=0厘米水柱)。
使用改良的博格量表测量呼吸困难程度。受试者在所有训练中达到相同程度的呼吸困难,但只有PAV+CPAP显著(p<0.05)提高了运动耐力(12.88[8.74]分钟),相比假干预训练(6.60[3.12]分钟)。PAV和CPAP训练期间的运动时间分别为7.10[2.83]和8.26[5.54]分钟。运动期间分钟通气量增加,但只有在PAV+CPAP训练时,运动结束时的分钟通气量大于无辅助的基线运动结束时的分钟通气量(分别为36.2[6.7]与26.6[6.4]升/分钟;p<0.05)。
在本研究中,PAV+CPAP在骑行运动期间提供了足够的通气辅助,以增加耐力时间。现在评估PAV+CPAP是否会促进运动训练是合适的。