Cox L A
Cox Associates, Denver, Colorado 80218, USA.
Environ Health Perspect. 1996 Dec;104 Suppl 6(Suppl 6):1413-29. doi: 10.1289/ehp.961041413.
Human cancer risks from benzene have been estimated from epidemiological data, with supporting evidence from animal bioassay data. This article reexamines the animal-based risk assessments using physiologically based pharmacokinetic (PBPK) models of benzene metabolism in animals and humans. Internal doses (total benzene metabolites) from oral gavage experiments in mice are well predicted by the PBPK model. Both the data and the PBPK model outputs are also well described by a simple nonlinear (Michaelis-Menten) regression model, as previously used by Bailer and Hoel [Metabolite-based internal doses used in risk assessment of benzene. Environ Health Perspect 82:177-184 (1989)]. Refitting the multistage model family to internal doses changes the maximum-likelihood estimate (MLE) dose-response curve for mice from linear-quadratic to purely cubic, so that low-dose risk estimates are smaller than in previous risk assessments. In contrast to Bailer and Hoel's findings using interspecies dose conversion, the use of internal dose estimates for humans from a PBPK model reduces estimated human risks at low doses. Sensitivity analyses suggest that the finding of a nonlinear MLE dose-response curve at low doses is robust to changes in internal dose definitions and more consistent with epidemiological data than earlier risk models. A Monte-Carlo uncertainty analysis based on maximum-entropy probabilities and Bayesian conditioning is used to develop an entire probability distribution for the true but unknown dose-response function. This allows the probability of a positive low-dose slope to be quantified: It is about 10%. An upper 95% confidence limit on the low-dose slope of excess risk is also obtained directly from the posterior distribution and is similar to previous q1* values. This approach suggests that the excess risk due to benzene exposure may be nonexistent (or even negative) at sufficiently low doses. Two types of biological information about benzene effects--pharmacokinetic and hematotoxic--are examined to test the plausibility of this finding. A framework for incorporating causally relevant biological information into benzene risk assessment is introduced, and it is shown that both pharmacokinetic and hematotoxic models appear to be consistent with the hypothesis that sufficiently low concentrations of inhaled benzene do not create and excess risk.
已根据流行病学数据估算了苯对人类癌症的风险,并得到了动物生物测定数据的支持。本文使用基于生理学的动物和人类苯代谢药代动力学(PBPK)模型,重新审视了基于动物的风险评估。PBPK模型能够很好地预测小鼠经口灌胃实验的内部剂量(苯代谢物总量)。数据和PBPK模型输出结果也都能用简单的非线性(米氏)回归模型很好地描述,就像Bailer和Hoel之前所使用的那样[用于苯风险评估的基于代谢物的内部剂量。《环境健康展望》82:177 - 184(1989年)]。将多阶段模型族重新拟合到内部剂量后,小鼠的最大似然估计(MLE)剂量反应曲线从线性二次变为纯三次,因此低剂量风险估计值比之前的风险评估要小。与Bailer和Hoel使用种间剂量转换的结果相反,使用PBPK模型估算的人类内部剂量会降低低剂量时的人类风险估计值。敏感性分析表明,低剂量时非线性MLE剂量反应曲线的发现对于内部剂量定义的变化具有稳健性,并且比早期风险模型更符合流行病学数据。基于最大熵概率和贝叶斯条件的蒙特卡罗不确定性分析用于为真实但未知的剂量反应函数建立完整的概率分布。这使得低剂量正斜率的概率得以量化:约为10%。超额风险低剂量斜率的95%上置信限也可直接从后验分布中获得,且与之前的q1*值相似。这种方法表明,在足够低的剂量下,苯暴露导致的超额风险可能不存在(甚至为负)。研究了关于苯效应的两种生物学信息——药代动力学和血液毒性——以检验这一发现的合理性。引入了一个将因果相关生物学信息纳入苯风险评估的框架,结果表明药代动力学和血液毒性模型似乎都与以下假设一致:吸入足够低浓度的苯不会产生超额风险。