Charpier S, Deniau J M
Institut des Neurosciences, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1488, Université Pierre et Marie Curie, 9, quai Saint-Bernard, F-75005 Paris, France.
Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7036-40. doi: 10.1073/pnas.94.13.7036.
The purpose of the present study was to investigate in vivo the activity-dependent plasticity of glutamatergic cortico-striatal synapses. Electrical stimuli were applied in the facial motor cortex and intracellular recordings were performed in the ipsilateral striatal projection field of this cortical area. Recorded cells exhibited the typical intrinsic membrane properties of striatal output neurons and were identified morphologically as medium spiny type I neurons. Subthreshold cortical tetanization produced either short-term posttetanic potentiation or short-term depression of cortically-evoked excitatory postsynaptic potentials. When coupled with a postsynaptic depolarization leading the membrane potential to a suprathreshold level, the tetanus induced long-term potentiation (LTP) of cortico-striatal synaptic transmission. Induction of striatal LTP was prevented by intracellular injection of a calcium chelator suggesting that this synaptic plasticity involves an increase of postsynaptic free calcium concentration. Contrasting with previous in vitro studies our findings demonstrate that LTP constitutes the normal form of use-dependent plasticity at cortico-striatal synapses. Since excitation of striatal neurons produces a disinhibition of premotor networks, LTP at excitatory striatal inputs should favor the initiation of movements and therefore could be critical for the functions of basal ganglia in motor learning.
本研究的目的是在体内研究谷氨酸能皮质-纹状体突触的活动依赖性可塑性。在面神经运动皮质施加电刺激,并在该皮质区域的同侧纹状体投射区进行细胞内记录。记录的细胞表现出纹状体输出神经元典型的内在膜特性,并在形态上被鉴定为I型中等棘状神经元。阈下皮质强直刺激可产生短期强直后增强或皮质诱发的兴奋性突触后电位的短期抑制。当与使膜电位达到阈上水平的突触后去极化相结合时,强直刺激诱导皮质-纹状体突触传递的长期增强(LTP)。细胞内注射钙螯合剂可阻止纹状体LTP的诱导,提示这种突触可塑性涉及突触后游离钙浓度的增加。与先前的体外研究不同,我们的发现表明LTP是皮质-纹状体突触依赖使用的可塑性的正常形式。由于纹状体神经元的兴奋会导致运动前网络的去抑制,兴奋性纹状体输入处的LTP应有利于运动的启动,因此可能对基底神经节在运动学习中的功能至关重要。