Suppr超能文献

规则的自动学习。一个使用人工智能改进基于计算机的12导联心电图中心肌梗死和左心室肥大检测的实际例子。

Automatic learning of rules. A practical example of using artificial intelligence to improve computer-based detection of myocardial infarction and left ventricular hypertrophy in the 12-lead ECG.

作者信息

Kaiser W, Faber T S, Findeis M

机构信息

Hellige GmbH, Freiburg, Germany.

出版信息

J Electrocardiol. 1996;29 Suppl:17-20. doi: 10.1016/s0022-0736(96)80004-5.

Abstract

The authors developed a computer program that detects myocardial infarction (MI) and left ventricular hypertrophy (LVH) in two steps: (1) by extracting parameter values from a 10-second, 12-lead electrocardiogram, and (2) by classifying the extracted parameter values with rule sets. Every disease has its dedicated set of rules. Hence, there are separate rule sets for anterior MI, inferior MI, and LVH. If at least one rule is satisfied, the disease is said to be detected. The computer program automatically develops these rule sets. A database (learning set) of healthy subjects and patients with MI, LVH, and mixed MI+LVH was used. After defining the rule type, initial limits, and expected quality of the rules (positive predictive value, minimum number of patients), the program creates a set of rules by varying the limits. The general rule type is defined as: disease = lim1l < p1 < or = lim1u and lim2l < p2 < or = lim2u and ... limnl < pn < or = limnu. When defining the rule types, only the parameters (p1 ... pn) that are known as clinical electrocardiographic criteria (amplitudes [mV] of Q, R, and T waves and ST-segment; duration [ms] of Q wave; frontal angle [degrees]) were used. This allowed for submitting the learned rule sets to an independent investigator for medical verification. It also allowed the creation of explanatory texts with the rules. These advantages are not offered by the neurons of a neural network. The learned rules were checked against a test set and the following results were obtained: MI: sensitivity 76.2%, positive predictive value 98.6%; LVH: sensitivity 72.3%, positive predictive value 90.9%. The specificity ratings for MI are better than 98%; for LVH, better than 90%.

摘要

作者开发了一个计算机程序,该程序分两步检测心肌梗死(MI)和左心室肥厚(LVH):(1)从10秒的12导联心电图中提取参数值;(2)使用规则集对提取的参数值进行分类。每种疾病都有其专门的规则集。因此,前壁心肌梗死、下壁心肌梗死和左心室肥厚有各自独立的规则集。如果至少满足一条规则,则称检测到该疾病。该计算机程序会自动生成这些规则集。使用了一个包含健康受试者以及患有心肌梗死、左心室肥厚和心肌梗死合并左心室肥厚患者的数据库(学习集)。在定义规则类型、初始界限和规则的预期质量(阳性预测值、患者最少数量)后,程序通过改变界限来创建一组规则。一般规则类型定义为:疾病 = lim1l < p1 < 或 = lim1u 且 lim2l < p2 < 或 = lim2u 且……limnl < pn < 或 = limnu。在定义规则类型时,仅使用了作为临床心电图标准已知的参数(Q、R和T波以及ST段的振幅[mV];Q波的持续时间[ms];额面角度[度])。这使得可以将学习到的规则集提交给独立研究人员进行医学验证。它还允许用规则创建解释性文本。神经网络的神经元无法提供这些优势。将学习到的规则与测试集进行核对,得到以下结果:心肌梗死:敏感性76.2%,阳性预测值98.6%;左心室肥厚:敏感性72.3%,阳性预测值90.9%。心肌梗死的特异性评级优于98%;左心室肥厚的特异性评级优于90%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验