Carminati J L, Stearns T
Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
J Cell Biol. 1997 Aug 11;138(3):629-41. doi: 10.1083/jcb.138.3.629.
Proper orientation of the mitotic spindle is critical for successful cell division in budding yeast. To investigate the mechanism of spindle orientation, we used a green fluorescent protein (GFP)-tubulin fusion protein to observe microtubules in living yeast cells. GFP-tubulin is incorporated into microtubules, allowing visualization of both cytoplasmic and spindle microtubules, and does not interfere with normal microtubule function. Microtubules in yeast cells exhibit dynamic instability, although they grow and shrink more slowly than microtubules in animal cells. The dynamic properties of yeast microtubules are modulated during the cell cycle. The behavior of cytoplasmic microtubules revealed distinct interactions with the cell cortex that result in associated spindle movement and orientation. Dynein-mutant cells had defects in these cortical interactions, resulting in misoriented spindles. In addition, microtubule dynamics were altered in the absence of dynein. These results indicate that microtubules and dynein interact to produce dynamic cortical interactions, and that these interactions result in the force driving spindle orientation.
有丝分裂纺锤体的正确定向对于芽殖酵母成功进行细胞分裂至关重要。为了研究纺锤体定向的机制,我们使用绿色荧光蛋白(GFP)-微管蛋白融合蛋白来观察活酵母细胞中的微管。GFP-微管蛋白被整合到微管中,使得细胞质微管和纺锤体微管都能被可视化,并且不会干扰正常的微管功能。酵母细胞中的微管表现出动态不稳定性,尽管它们的生长和收缩比动物细胞中的微管更慢。酵母微管的动态特性在细胞周期中受到调节。细胞质微管的行为揭示了与细胞皮层的独特相互作用,这导致相关纺锤体的移动和定向。动力蛋白突变细胞在这些皮层相互作用中存在缺陷,导致纺锤体定向错误。此外,在没有动力蛋白的情况下,微管动力学发生了改变。这些结果表明,微管和动力蛋白相互作用以产生动态皮层相互作用,并且这些相互作用产生驱动纺锤体定向的力。