Suppr超能文献

通过建立灵长类动物异种线粒体杂交细胞系来扩展功能性人类线粒体DNA数据库。

Expanding the functional human mitochondrial DNA database by the establishment of primate xenomitochondrial cybrids.

作者信息

Kenyon L, Moraes C T

机构信息

Department of Neurology, University of Miami School of Medicine, Miami, FL 33136, USA.

出版信息

Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9131-5. doi: 10.1073/pnas.94.17.9131.

Abstract

The nuclear and mitochondrial genomes coevolve to optimize approximately 100 different interactions necessary for an efficient ATP-generating system. This coevolution led to a species-specific compatibility between these genomes. We introduced mitochondrial DNA (mtDNA) from different primates into mtDNA-less human cells and selected for growth of cells with a functional oxidative phosphorylation system. mtDNA from common chimpanzee, pigmy chimpanzee, and gorilla were able to restore oxidative phosphorylation in the context of a human nuclear background, whereas mtDNA from orangutan, and species representative of Old-World monkeys, New-World monkeys, and lemurs were not. Oxygen consumption, a sensitive index of respiratory function, showed that mtDNA from chimpanzee, pigmy chimpanzee, and gorilla replaced the human mtDNA and restored respiration to essentially normal levels. Mitochondrial protein synthesis was also unaltered in successful "xenomitochondrial cybrids." The abrupt failure of mtDNA from primate species that diverged from humans as recently as 8-18 million years ago to functionally replace human mtDNA suggests the presence of one or a few mutations affecting critical nuclear-mitochondrial genome interactions between these species. These cellular systems provide a demonstration of intergenus mtDNA transfer, expand more than 20-fold the number of mtDNA polymorphisms that can be analyzed in a human nuclear background, and provide a novel model for the study of nuclear-mitochondrial interactions.

摘要

细胞核和线粒体基因组共同进化,以优化高效ATP生成系统所需的约100种不同相互作用。这种共同进化导致了这些基因组之间物种特异性的兼容性。我们将来自不同灵长类动物的线粒体DNA(mtDNA)导入无mtDNA的人类细胞中,并选择具有功能性氧化磷酸化系统的细胞进行生长。来自普通黑猩猩、侏儒黑猩猩和大猩猩的mtDNA能够在人类核背景下恢复氧化磷酸化,而来自猩猩以及旧世界猴、新世界猴和狐猴的物种代表的mtDNA则不能。氧气消耗是呼吸功能的一个敏感指标,表明来自黑猩猩、侏儒黑猩猩和大猩猩的mtDNA取代了人类mtDNA,并将呼吸恢复到基本正常的水平。在成功的“异种线粒体胞质杂种”中,线粒体蛋白质合成也未改变。与人类在800万至1800万年前才分化的灵长类物种的mtDNA突然无法在功能上取代人类mtDNA,这表明存在一个或几个影响这些物种之间关键核-线粒体基因组相互作用的突变。这些细胞系统展示了属间mtDNA转移,将可在人类核背景下分析的mtDNA多态性数量扩大了20多倍,并为研究核-线粒体相互作用提供了一个新模型。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验