Suppr超能文献

The ribosomal S16 protein of Escherichia coli displaying a DNA-nicking activity binds to cruciform DNA.

作者信息

Bonnefoy E

机构信息

Institut de Biologie Physico-Chimique, Laboratoire de Physiologie Bactérienne, UPR9073, Paris, France.

出版信息

Eur J Biochem. 1997 Aug 1;247(3):852-9. doi: 10.1111/j.1432-1033.1997.t01-1-00852.x.

Abstract

We have recently shown that the ribosomal S16 protein of Escherichia coli is a magnesium-dependent DNase which introduces nicks into supercoiled DNA molecules [Oberto, J., Bonnefoy, E., Mouray, E., Pellegrini, O., Wikstrom, P. M. & Rouvière-Yaniv, J. (1996) Mol. Microbiol. 19, 1319-1330]. In this work we analysed the DNA-binding and DNA-nicking properties of S16 using two different approaches. Gel-retardation assays showed that S16 is a structure-specific DNA-binding protein displaying a preferential binding for cruciform DNA structures. This specific binding to cruciform DNA was further investigated using a supercoiled plasmid carrying the origin of replication of E. coli (oriC) which is an (A+T)-rich DNA region with abundant palindromic sequences susceptible of forming cruciform-like structures in vivo. We show that the nicks introduced by S16 in oriC are not randomly positioned but are precisely localised near such palindromic sequences. In addition, the nicking activity of S16 appeared to be sequence dependent since the cuts introduced by S16 occurred next to an adenine, in most cases an unpaired adenine, usually followed by a GTT sequence. Overall these experiments indicate that S16 requires a cruciform-like DNA structure to bind DNA and the presence of a particular sequence in order to introduce specific single-stranded cuts into a DNA molecule.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验