Haldimann A, Fisher S L, Daniels L L, Walsh C T, Wanner B L
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
J Bacteriol. 1997 Sep;179(18):5903-13. doi: 10.1128/jb.179.18.5903-5913.1997.
An Escherichia coli K-12 model system was developed for studying the VanS-VanR two-component regulatory system required for high-level inducible vancomycin resistance in Enterococcus faecium BM4147. Our model system is based on the use of reporter strains with lacZ transcriptional and translational fusions to the PvanR or PvanH promoter of the vanRSHAX gene cluster. These strains also express vanR and vanS behind the native PvanR promoter, the arabinose-inducible ParaB promoter, or the rhamnose-inducible PrhaB promoter. Our reporter strains have the respective fusions stably recombined onto the chromosome in single copy, thereby avoiding aberrant regulatory effects that may occur with plasmid-bearing strains. They were constructed by using allele replacement methods or a conditionally replicative attP plasmid. Using these reporter strains, we demonstrated that (i) the response regulator VanR activates PvanH, but not PvanR, expression upon activation (phosphorylation) by the partner kinase VanS, the noncognate kinase PhoR, or acetyl phosphate, indicating that phospho-VanR (P-VanR) is a transcriptional activator; (ii) VanS interferes with activation of VanR by PhoR or acetyl phosphate, indicating that VanS also acts as a P-VanR phosphatase; and (iii) the conserved, phosphate-accepting histidine (H164) of VanS is required for activation (phosphorylation) of VanR but not for deactivation (dephosphorylation) of P-VanR. Similar reporter strains may be useful in new studies on these and other interactions of the VanS-VanR system (and other systems), screening for inhibitors of these interactions, and deciphering the molecular logic of the signal(s) responsible for activation of the VanS-VanR system in vivo. Advantages of using an E. coli model system for in vivo studies on VanS and VanR are also discussed.
构建了一个大肠杆菌K-12模型系统,用于研究粪肠球菌BM4147中高水平诱导型万古霉素耐药性所需的VanS-VanR双组分调节系统。我们的模型系统基于使用报告菌株,这些菌株带有与vanRSHAX基因簇的PvanR或PvanH启动子的lacZ转录和翻译融合。这些菌株还在天然PvanR启动子、阿拉伯糖诱导型ParaB启动子或鼠李糖诱导型PrhaB启动子之后表达vanR和vanS。我们的报告菌株具有各自的融合体,以单拷贝稳定地重组到染色体上,从而避免了携带质粒的菌株可能出现的异常调节作用。它们是通过等位基因替换方法或条件复制型attP质粒构建的。使用这些报告菌株,我们证明了:(i) 响应调节因子VanR在被伴侣激酶VanS、非同源激酶PhoR或乙酰磷酸激活(磷酸化)后,激活PvanH的表达,但不激活PvanR的表达,这表明磷酸化的VanR(P-VanR)是一种转录激活因子;(ii) VanS干扰PhoR或乙酰磷酸对VanR的激活,这表明VanS也作为一种P-VanR磷酸酶发挥作用;(iii) VanS保守的磷酸接受组氨酸(H164)是VanR激活(磷酸化)所必需的,但不是P-VanR失活(去磷酸化)所必需的。类似的报告菌株可能有助于对VanS-VanR系统(以及其他系统)的这些和其他相互作用进行新的研究,筛选这些相互作用的抑制剂,并破译负责体内激活VanS-VanR系统的信号的分子逻辑。还讨论了使用大肠杆菌模型系统对VanS和VanR进行体内研究的优势。