Suppr超能文献

放射治疗中用于计算优化的多目标决策理论。

Multiobjective decision theory for computational optimization in radiation therapy.

作者信息

Yu Y

机构信息

Department of Radiation Oncology, University of Rochester, New York 14642-8647, USA.

出版信息

Med Phys. 1997 Sep;24(9):1445-54. doi: 10.1118/1.598033.

Abstract

Machine-guided iterative optimization in radiation oncology requires ordinal or cardinal ranking of competing treatment plans. When the clinical objectives are multifaceted and incommensurable, the ranking formalism must take into account the decision maker's tradeoff strategies in a multidimensional decision space. To capture the decision processes in treatment planning, a multiobjective decision-theoretic scheme is formulated. Ranking among a group of candidate plans is based on a generalized distance metric. A dynamic metric weighting function is defined based on the state energy of the decision system, which is assumed to undergo thermodynamic cooling with iteration time. The decision maker is required to specify a baseline ranking of the objectives, which is taken to be the ground state of the decision system. This decision-theoretic formalism was applied to idealized cases in stereotactic radiosurgery and prostatic implantation, using the genetic algorithm as the optimization engine. The optimization pathways and the outcome at limited horizons indicated that the combined scheme of decision-theoretic steering and iterative optimization was robust and produced treatment plans consistent with the user's expectation. The effect of treatment uncertainties was simulated using imperfect objectives; however, certain recurring plans could be identified as optimized baseline solutions. Overall, the present formalism provides a realistic alternative to complete utility assessment or human-guided exploration of the efficient solution set.

摘要

放射肿瘤学中的机器引导迭代优化需要对相互竞争的治疗计划进行有序或基数排序。当临床目标是多方面且不可通约时,排序形式必须考虑决策者在多维决策空间中的权衡策略。为了捕捉治疗计划中的决策过程,制定了一种多目标决策理论方案。一组候选计划之间的排序基于广义距离度量。基于决策系统的状态能量定义了一个动态度量加权函数,假设该系统随迭代时间经历热力学冷却。要求决策者指定目标的基线排序,将其视为决策系统的基态。使用遗传算法作为优化引擎,将这种决策理论形式应用于立体定向放射外科和前列腺植入的理想化案例。有限视野下的优化路径和结果表明,决策理论引导和迭代优化的组合方案是稳健的,并且产生了与用户期望一致的治疗计划。使用不完美目标模拟了治疗不确定性的影响;然而,某些反复出现的计划可以被确定为优化的基线解决方案。总体而言,目前的形式为完整的效用评估或对有效解集的人工引导探索提供了一种现实的替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验