Suppr超能文献

通过人工神经网络在12导联心电图中检测急性心肌梗死。

Acute myocardial infarction detected in the 12-lead ECG by artificial neural networks.

作者信息

Hedén B, Ohlin H, Rittner R, Edenbrandt L

机构信息

Department of Clinical Physiology, Lund University, Sweden.

出版信息

Circulation. 1997 Sep 16;96(6):1798-802. doi: 10.1161/01.cir.96.6.1798.

Abstract

BACKGROUND

The 12-lead ECG, together with patient history and clinical findings, remains the most important method for early diagnosis of acute myocardial infarction. Automated interpretation of ECG is widely used as decision support for less experienced physicians. Recent reports have demonstrated that artificial neural networks can be used to improve selected aspects of conventional rule-based interpretation programs. The purpose of this study was to detect acute myocardial infarction in the 12-lead ECG with artificial neural networks.

METHODS AND RESULTS

A total of 1120 ECGs from patients with acute myocardial infarction and 10,452 control ECGs, recorded at an emergency department with computerized ECGs, were studied. Artificial neural networks were trained to detect acute myocardial infarction by use of measurements from the 12 ST-T segments of each ECG, together with the correct diagnosis. After this training process, the performance of the neural networks was compared with that of a widely used ECG interpretation program and the classification of an experienced cardiologist. The neural networks showed higher sensitivities and discriminant power than both the interpretation program and cardiologist. The sensitivity of the neural networks was 15.5% (95% confidence interval [CI], 12.4 to 18.6) higher than that of the interpretation program compared at a specificity of 95.4% (P<.00001) and 10.5% (95% CI, 7.2 to 13.6) higher than the cardiologist at a specificity of 86.3% (P<.00001).

CONCLUSIONS

Artificial neural networks can be used to improve automated ECG interpretation for acute myocardial infarction. The networks may be useful as decision support even for the experienced ECG readers.

摘要

背景

12导联心电图结合患者病史和临床检查结果,仍然是急性心肌梗死早期诊断的最重要方法。心电图自动解读作为经验较少的医生的决策支持手段被广泛应用。最近的报告表明,人工神经网络可用于改进传统基于规则的解读程序的某些方面。本研究的目的是使用人工神经网络检测12导联心电图中的急性心肌梗死。

方法与结果

研究了来自急性心肌梗死患者的1120份心电图以及在急诊科通过计算机心电图记录的10452份对照心电图。利用每份心电图12个ST - T段的测量值以及正确诊断结果对人工神经网络进行训练,以检测急性心肌梗死。经过此训练过程后,将神经网络的性能与广泛使用的心电图解读程序以及一位经验丰富的心脏病专家的分类结果进行比较。神经网络显示出比解读程序和心脏病专家更高的敏感性和判别能力。在特异性为95.4%时,神经网络的敏感性比解读程序高15.5%(95%置信区间[CI],12.4至18.6)(P<0.00001);在特异性为86.3%时,比心脏病专家高10.5%(95%CI,7.2至13.6)(P<0.00001)。

结论

人工神经网络可用于改进急性心肌梗死的心电图自动解读。即使对于经验丰富的心电图解读人员,该网络作为决策支持也可能有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验