Rice L M, Brennwald P, Brünger A T
The Howard Hughes Medical Institute, and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
FEBS Lett. 1997 Sep 22;415(1):49-55. doi: 10.1016/s0014-5793(97)01091-0.
The evolutionarily conserved SNARE (SNAP receptor) proteins and their complexes are key players in the docking and fusion of secretory vesicles with their target membrane. Biophysical techniques were used to characterize structural and energetic properties of the cytoplasmic domains of the yeast SNAREs Snc1 and Sso1, of the SNAP-25-like domain of Sec9, and of the Sso1:Sec9 and Sso1:Sec9:Snc1 complexes. Individually, all three SNAREs are monomeric; Sso1 shows significant secondary structure while Snc1 and Sec9 are largely unstructured. Ternary SNARE complex formation (KD <50 nM) is accompanied by a more than two-fold increase in secondary structure. This binding induced structure, the large increase in thermal stability, and the self-association of the ternary complex represent conserved properties of SNAREs that are probably important in vesicle docking and fusion.
进化上保守的SNARE(可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体)蛋白及其复合物是分泌囊泡与靶膜对接和融合的关键参与者。运用生物物理技术来表征酵母SNARE蛋白Snc1和Sso1的胞质结构域、Sec9的类SNAP-25结构域以及Sso1:Sec9和Sso1:Sec9:Snc1复合物的结构和能量特性。单独来看,这三种SNARE蛋白均为单体;Sso1呈现出显著的二级结构,而Snc1和Sec9在很大程度上是无结构的。三元SNARE复合物的形成(解离常数KD<50 nM)伴随着二级结构增加两倍多。这种结合诱导的结构、热稳定性的大幅提高以及三元复合物的自我缔合代表了SNARE蛋白的保守特性,这些特性可能在囊泡对接和融合中起着重要作用。