Suppr超能文献

单细胞微生物中的昼夜节律和超日节律时钟控制的节律。

Circadian and ultradian clock-controlled rhythms in unicellular microorganisms.

作者信息

Lloyd D

机构信息

Microbiology Group (PABIO), University of Wales Cardiff, UK.

出版信息

Adv Microb Physiol. 1998;39:291-338. doi: 10.1016/s0065-2911(08)60019-3.

Abstract

The time structure of a biological system is at least as intricate as its spatial structure. Whereas we have detailed information about the latter, our understanding of the former is still rudimentary. As techniques for monitoring intracellular processes continuously in single cells become more refined, it becomes increasingly evident that periodic behaviour abounds in all time domains. Circadian timekeeping dominates in natural environments. Here the free-running period is about 24 h. Circadian rhythms in eukaryotes and prokaryotes allow predictive matching of intracellular states with environmental changes during the daily cycles. Unicellular organisms provide excellent systems for the study of these phenomena, which pervade all higher life forms. Intracellular timekeeping is essential. The presence of a temperature-compensated oscillator provides such a timer. The coupled outputs (epigenetic oscillations) of this ultradian clock constitute a special class of ultradian rhythm. These are undamped and endogenously driven by a device which shows biochemical properties characteristic of transcriptional and translational elements. Energy-yielding processes, protein turnover, motility and the timing of the cell-division cycle processes are all controlled by the ultradian clock. Different periods characterize different species, and this indicates a genetic determinant. Periods range from 30 min to 4 h. Mechanisms of clock control are being elucidated; it is becoming evident that many different control circuits can provide these functions.

摘要

生物系统的时间结构至少与其空间结构一样错综复杂。尽管我们对后者有详细的信息,但对前者的理解仍很初步。随着在单细胞中持续监测细胞内过程的技术日益完善,越来越明显的是,周期性行为在所有时间域中都大量存在。昼夜节律在自然环境中占主导地位。在这里,自由运行周期约为24小时。真核生物和原核生物中的昼夜节律使得细胞内状态能够在日常周期中与环境变化进行预测性匹配。单细胞生物为研究这些现象提供了极佳的系统,这些现象遍及所有高等生命形式。细胞内计时至关重要。温度补偿振荡器的存在提供了这样一个计时器。这个超日时钟的耦合输出(表观遗传振荡)构成了一类特殊的超日节律。这些振荡是无阻尼的,并且由一个具有转录和翻译元件特征生化特性的装置内源性驱动。能量产生过程、蛋白质周转、运动以及细胞分裂周期过程的时间安排均由超日时钟控制。不同的周期表征不同的物种,这表明存在遗传决定因素。周期范围从30分钟到4小时。时钟控制机制正在被阐明;越来越明显的是,许多不同的控制回路都能提供这些功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验