Kempf B, Gade J, Bremer E
Department of Biology, Philipps University Marburg, Germany.
J Bacteriol. 1997 Oct;179(20):6213-20. doi: 10.1128/jb.179.20.6213-6220.1997.
The OpuA transport system of Bacillus subtilis functions as a high-affinity uptake system for the osmoprotectant glycine betaine. It is a member of the ABC transporter superfamily and consists of an ATPase (OpuAA), an integral membrane protein (OpuAB), and a hydrophilic polypeptide (OpuAC) that shows the signature sequence of lipoproteins (B. Kempf and E. Bremer, J. Biol. Chem. 270:16701-16713, 1995). The OpuAC protein might thus serve as an extracellular substrate binding protein anchored in the cytoplasmic membrane via a lipid modification at an amino-terminal cysteine residue. A malE-opuAC hybrid gene was constructed and used to purify a lipidless OpuAC protein. The purified protein bound radiolabeled glycine betaine avidly and exhibited a KD of 6 microM for this ligand, demonstrating that OpuAC indeed functions as the substrate binding protein for the B. subtilis OpuA system. We have selectively expressed the opuAC gene under T7 phi10 control in Escherichia coli and have demonstrated through its metabolic labeling with [3H]palmitic acid that OpuAC is a lipoprotein. A mutant expressing an OpuAC protein in which the amino-terminal cysteine residue was changed to an alanine (OpuAC-3) was constructed by oligonucleotide site-directed mutagenesis. The OpuAC-3 protein was not acylated by [3H]palmitic acid, and part of it was secreted into the periplasmic space of E. coli, where it could be released from the cells by cold osmotic shock. The opuAC-3 mutation was recombined into an otherwise wild-type opuA operon in the chromosome of B. subtilis. Unexpectedly, this mutant OpuAC system still functioned efficiently for glycine betaine acquisition in vivo under high-osmolarity growth conditions. In addition, the mutant OpuA transporter exhibited kinetic parameters similar to that of the wild-type system. Our data suggest that the lipidless OpuAC-3 protein is held in the cytoplasmic membrane of B. subtilis via its uncleaved hydrophobic signal peptide.
枯草芽孢杆菌的OpuA转运系统作为渗透压保护剂甘氨酸甜菜碱的高亲和力摄取系统发挥作用。它是ABC转运蛋白超家族的成员,由一个ATP酶(OpuAA)、一个整合膜蛋白(OpuAB)和一个显示脂蛋白特征序列的亲水性多肽(OpuAC)组成(B. 肯普夫和E. 布雷默,《生物化学杂志》270:16701 - 16713, 1995)。因此,OpuAC蛋白可能作为一种细胞外底物结合蛋白,通过氨基末端半胱氨酸残基处的脂质修饰锚定在细胞质膜上。构建了一个malE - opuAC杂交基因,并用于纯化无脂质的OpuAC蛋白。纯化后的蛋白能 avidly结合放射性标记的甘氨酸甜菜碱,对该配体的解离常数为6微摩尔,表明OpuAC确实作为枯草芽孢杆菌OpuA系统的底物结合蛋白发挥作用。我们在大肠杆菌中在T7 phi10控制下选择性表达了opuAC基因,并通过用[3H]棕榈酸对其进行代谢标记证明OpuAC是一种脂蛋白。通过寡核苷酸定点诱变构建了一个表达OpuAC蛋白的突变体,其中氨基末端半胱氨酸残基被改变为丙氨酸(OpuAC - 3)。OpuAC - 3蛋白未被[3H]棕榈酸酰化,并且其一部分分泌到大肠杆菌的周质空间中,在那里它可以通过冷渗透休克从细胞中释放出来。opuAC - 3突变被重组到枯草芽孢杆菌染色体中一个其他方面为野生型的opuA操纵子中。出乎意料的是,这个突变的OpuAC系统在高渗透压生长条件下在体内获取甘氨酸甜菜碱时仍然高效发挥作用。此外,突变的OpuA转运蛋白表现出与野生型系统相似的动力学参数。我们的数据表明,无脂质的OpuAC - 3蛋白通过其未切割的疏水信号肽保留在枯草芽孢杆菌的细胞质膜中。