McMeekin T A, Brown J, Krist K, Miles D, Neumeyer K, Nichols D S, Olley J, Presser K, Ratkowsky D A, Ross T, Salter M, Soontranon S
Department of Agricultural Science, University of Tasmania, Hobart, Australia.
Emerg Infect Dis. 1997 Oct-Dec;3(4):541-9. doi: 10.3201/eid0304.970419.
Because microorganisms are easily dispersed, display physiologic diversity, and tolerate extreme conditions, they are ubiquitous and may contaminate and grow in many food products. The behavior of microbial populations in foods (growth, survival, or death) is determined by the properties of the food (e.g., water activity and pH) and the storage conditions (e.g., temperature, relative humidity, and atmosphere). The effect of these properties can be predicted by mathematical models derived from quantitative studies on microbial populations. Temperature abuse is a major factor contributing to foodborne disease; monitoring temperature history during food processing, distribution, and storage is a simple, effective means to reduce the incidence of food poisoning. Interpretation of temperature profiles by computer programs based on predictive models allows informed decisions on the shelf life and safety of foods. In- or on-package temperature indicators require further development to accurately predict microbial behavior. We suggest a basis for a "universal" temperature indicator. This article emphasizes the need to combine kinetic and probability approaches to modeling and suggests a method to define the bacterial growth/no growth interface. Advances in controlling foodborne pathogens depend on understanding the pathogens' physiologic responses to growth constraints, including constraints conferring increased survival capacity.
由于微生物易于扩散、具有生理多样性且能耐受极端条件,它们无处不在,可能在许多食品中污染并生长。食品中微生物群体的行为(生长、存活或死亡)取决于食品的特性(如水活性和pH值)以及储存条件(如温度、相对湿度和气氛)。这些特性的影响可以通过对微生物群体进行定量研究得出的数学模型来预测。温度滥用是导致食源性疾病的一个主要因素;监测食品加工、分销和储存过程中的温度历史是降低食物中毒发生率的一种简单而有效的方法。基于预测模型的计算机程序对温度曲线的解读有助于对食品的保质期和安全性做出明智的决策。包装内或包装上的温度指示器需要进一步开发,以准确预测微生物行为。我们提出了一种“通用”温度指示器的基础。本文强调了将动力学和概率方法结合用于建模的必要性,并提出了一种定义细菌生长/不生长界面的方法。控制食源性病原体方面的进展取决于了解病原体对生长限制因素的生理反应,包括那些赋予其更强生存能力的限制因素。