Suppr超能文献

定量微生物学:食品安全的基础。

Quantitative microbiology: a basis for food safety.

作者信息

McMeekin T A, Brown J, Krist K, Miles D, Neumeyer K, Nichols D S, Olley J, Presser K, Ratkowsky D A, Ross T, Salter M, Soontranon S

机构信息

Department of Agricultural Science, University of Tasmania, Hobart, Australia.

出版信息

Emerg Infect Dis. 1997 Oct-Dec;3(4):541-9. doi: 10.3201/eid0304.970419.

Abstract

Because microorganisms are easily dispersed, display physiologic diversity, and tolerate extreme conditions, they are ubiquitous and may contaminate and grow in many food products. The behavior of microbial populations in foods (growth, survival, or death) is determined by the properties of the food (e.g., water activity and pH) and the storage conditions (e.g., temperature, relative humidity, and atmosphere). The effect of these properties can be predicted by mathematical models derived from quantitative studies on microbial populations. Temperature abuse is a major factor contributing to foodborne disease; monitoring temperature history during food processing, distribution, and storage is a simple, effective means to reduce the incidence of food poisoning. Interpretation of temperature profiles by computer programs based on predictive models allows informed decisions on the shelf life and safety of foods. In- or on-package temperature indicators require further development to accurately predict microbial behavior. We suggest a basis for a "universal" temperature indicator. This article emphasizes the need to combine kinetic and probability approaches to modeling and suggests a method to define the bacterial growth/no growth interface. Advances in controlling foodborne pathogens depend on understanding the pathogens' physiologic responses to growth constraints, including constraints conferring increased survival capacity.

摘要

由于微生物易于扩散、具有生理多样性且能耐受极端条件,它们无处不在,可能在许多食品中污染并生长。食品中微生物群体的行为(生长、存活或死亡)取决于食品的特性(如水活性和pH值)以及储存条件(如温度、相对湿度和气氛)。这些特性的影响可以通过对微生物群体进行定量研究得出的数学模型来预测。温度滥用是导致食源性疾病的一个主要因素;监测食品加工、分销和储存过程中的温度历史是降低食物中毒发生率的一种简单而有效的方法。基于预测模型的计算机程序对温度曲线的解读有助于对食品的保质期和安全性做出明智的决策。包装内或包装上的温度指示器需要进一步开发,以准确预测微生物行为。我们提出了一种“通用”温度指示器的基础。本文强调了将动力学和概率方法结合用于建模的必要性,并提出了一种定义细菌生长/不生长界面的方法。控制食源性病原体方面的进展取决于了解病原体对生长限制因素的生理反应,包括那些赋予其更强生存能力的限制因素。

相似文献

1
Quantitative microbiology: a basis for food safety.
Emerg Infect Dis. 1997 Oct-Dec;3(4):541-9. doi: 10.3201/eid0304.970419.
2
Towards a novel class of predictive microbial growth models.
Int J Food Microbiol. 2005 Apr 15;100(1-3):97-105. doi: 10.1016/j.ijfoodmicro.2004.10.007. Epub 2004 Dec 15.
3
A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
Int J Food Microbiol. 2005 Apr 15;100(1-3):21-32. doi: 10.1016/j.ijfoodmicro.2004.10.005. Epub 2004 Dec 8.
5
Applicability of a microbial Time Temperature Indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat.
Int J Food Microbiol. 2009 Aug 15;133(3):272-8. doi: 10.1016/j.ijfoodmicro.2009.05.030. Epub 2009 Jun 7.
6
Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
Int J Food Microbiol. 2005 Jul 25;102(3):305-22. doi: 10.1016/j.ijfoodmicro.2004.11.021.
7
Ecophysiology of food-borne pathogens: Essential knowledge to improve food safety.
Int J Food Microbiol. 2010 May 30;139 Suppl 1:S64-78. doi: 10.1016/j.ijfoodmicro.2010.01.041. Epub 2010 Feb 1.
8
A simplified approach for modelling the bacterial growth/no growth boundary.
Food Microbiol. 2011 May;28(3):384-91. doi: 10.1016/j.fm.2010.09.011. Epub 2010 Oct 1.
9
Inactivation of foodborne pathogens using a one atmosphere uniform glow discharge plasma.
Foodborne Pathog Dis. 2007 Spring;4(1):50-9. doi: 10.1089/fpd.2006.62.
10
Microbial Responses Viewer (MRV): a new ComBase-derived database of microbial responses to food environments.
Int J Food Microbiol. 2009 Aug 31;134(1-2):75-82. doi: 10.1016/j.ijfoodmicro.2008.12.019. Epub 2008 Dec 25.

引用本文的文献

1
Bacterial colony size growth estimation by deep learning.
BMC Microbiol. 2023 Oct 26;23(1):307. doi: 10.1186/s12866-023-03053-y.
2
Predictive Modeling of Microbial Behavior in Food.
Foods. 2019 Dec 6;8(12):654. doi: 10.3390/foods8120654.
4
Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature.
Asian-Australas J Anim Sci. 2014 Jul;27(7):1013-8. doi: 10.5713/ajas.2013.13579.
5
Gamma study of pH, nitrite, and salt inhibition of Aeromonas hydrophila.
Appl Environ Microbiol. 2007 Apr;73(7):2239-46. doi: 10.1128/AEM.02013-06. Epub 2007 Feb 9.
8
Real-time measurements of the interaction between single cells of Listeria monocytogenes and nisin on a solid surface.
Appl Environ Microbiol. 2000 Aug;66(8):3586-91. doi: 10.1128/AEM.66.8.3586-3591.2000.

本文引用的文献

1
The aerobic growth of Aeromonas hydrophila and Listeria monocytogenes in broths and on pork.
Int J Food Microbiol. 1997 Mar 18;35(1):67-74. doi: 10.1016/s0168-1605(96)01224-x.
2
The effect of previous growth conditions on the lag phase time of some foodborne pathogenic micro-organisms.
Int J Food Microbiol. 1997 Jan;34(1):89-94. doi: 10.1016/s0168-1605(96)01170-1.
3
Shelf life prediction: status and future possibilities.
Int J Food Microbiol. 1996 Nov;33(1):65-83. doi: 10.1016/0168-1605(96)01138-5.
4
Luminescent Salmonella strains as real time reporters of growth and recovery from sublethal injury in food.
Int J Food Microbiol. 1996 Aug;31(1-3):27-43. doi: 10.1016/0168-1605(96)00941-5.
7
Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes.
J Bacteriol. 1994 Jan;176(2):426-31. doi: 10.1128/jb.176.2.426-431.1994.
8
The effect of transient temperatures on the growth of Salmonella typhimurium LT2. I: Cycling within the growth region.
J Appl Bacteriol. 1994 Jul;77(1):113-9. doi: 10.1111/j.1365-2672.1994.tb03052.x.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验