Lightfoot E N, Bassingthwaighte J B, Grabowski E F
Ann Biomed Eng. 1976 Mar;4(1):78-90. doi: 10.1007/BF02363560.
The hydrodynamic theory of diffusion is extended to describe osmotic flow of binary solutions in microporous membranes. It is shown that the one-dimensional microscopic rate equations of irreversible thermodynamics are completely consistent with creeping flow hydrodynamic analyses. It is further shown how one may determine the one-dimensional coefficients from the results of hydrodynamic analysis and how one may obtain macroscopic descriptions by integrating the microscopic equations over the diffusion path. In this way a complete and self-consistent means is developed for interpreting macroscopic behavior in terms of a molecular model. By way of example, a scheme is presented and implemented for estimation of reflection coefficients, , from the hydrodynamic analysis of P. M. Bungay and H. Brenner ( 1973, 60, 81). The resulting ’s are sensitive to the solute radial probability density; for a uniform distribution the present values are larger than those reported recently by other workers.
扩散的流体动力学理论被扩展以描述二元溶液在微孔膜中的渗透流。结果表明,不可逆热力学的一维微观速率方程与蠕动流流体动力学分析完全一致。进一步表明如何从流体动力学分析结果确定一维系数,以及如何通过在扩散路径上对微观方程进行积分来获得宏观描述。通过这种方式,开发了一种完整且自洽的方法,用于根据分子模型解释宏观行为。作为示例,提出并实施了一种方案,用于根据P. M. Bungay和H. Brenner(1973, 60, 81)的流体动力学分析来估计反射系数。所得的反射系数对溶质径向概率密度敏感;对于均匀分布,当前值大于其他研究人员最近报道的值。