Gerstner W, Kreiter A K, Markram H, Herz A V
Center for Neuromimetic Systems, Swiss Federal Institute of Technology Lausanne.
Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12740-1. doi: 10.1073/pnas.94.24.12740.
Computational neuroscience has contributed significantly to our understanding of higher brain function by combining experimental neurobiology, psychophysics, modeling, and mathematical analysis. This article reviews recent advances in a key area: neural coding and information processing. It is shown that synapses are capable of supporting computations based on highly structured temporal codes. Such codes could provide a substrate for unambiguous representations of complex stimuli and be used to solve difficult cognitive tasks, such as the binding problem. Unsupervised learning rules could generate the circuitry required for precise temporal codes. Together, these results indicate that neural systems perform a rich repertoire of computations based on action potential timing.
计算神经科学通过整合实验神经生物学、心理物理学、建模和数学分析,为我们理解高等脑功能做出了重大贡献。本文回顾了一个关键领域的最新进展:神经编码与信息处理。研究表明,突触能够支持基于高度结构化时间编码的计算。这样的编码可以为复杂刺激的明确表征提供基础,并用于解决诸如捆绑问题等困难的认知任务。无监督学习规则可以生成精确时间编码所需的神经回路。这些结果共同表明,神经系统基于动作电位的时间进行丰富多样的计算。