Suppr超能文献

荧光假单胞菌GB-1锰氧化因子的部分纯化及特性分析

Partial purification and characterization of manganese-oxidizing factors of Pseudomonas fluorescens GB-1.

作者信息

Okazaki M, Sugita T, Shimizu M, Ohode Y, Iwamoto K, de Vrind-de Jong E W, de Vrind J P, Corstjens P L

机构信息

Department of Biology, Tokyo Gakugei University, Japan.

出版信息

Appl Environ Microbiol. 1997 Dec;63(12):4793-9. doi: 10.1128/aem.63.12.4793-4799.1997.

Abstract

The Mn(2+)-oxidizing bacterium Pseudomonas fluorescens GB-1 deposits Mn oxide around the cell. During growth of a culture, the Mn(2+)-oxidizing activity of the cells first appeared in the early stationary growth phase. It depended on the O2 concentration in the culture during the late logarithmic growth phase. Maximal activity was observed at an oxygen concentration of 26% saturation. The activity could be recovered in cell extracts and was proportional to the protein concentration in the cell extracts. The specific activity was increased 125-fold by ammonium sulfate precipitation followed by reversed-phase and gel filtration column chromatographies. The activity of the partly purified Mn(2+)-oxidizing preparation had a pH optimum of circa 7 and a temperature optimum of 35 degrees C and was lost by heating. The Mn(2+)-oxidizing activity was sensitive to NaN3 and HgCl2. It was inhibited by KCN, EDTA, Tris, and o-phenanthroline. Although most data indicated the involvement of protein in Mn2+ oxidation, the activity was slightly stimulated by sodium dodecyl sulfate at a low concentration and by treatment with pronase and V8 protease. By polyacrylamide gel electrophoresis, two Mn(2+)-oxidizing factors with estimated molecular weights of 180,000 and 250,000 were detected.

摘要

锰(Ⅱ)氧化细菌荧光假单胞菌GB-1在细胞周围沉积锰氧化物。在培养物生长过程中,细胞的锰(Ⅱ)氧化活性首先出现在稳定生长早期。它取决于对数生长后期培养物中的氧气浓度。在氧气浓度为26%饱和度时观察到最大活性。该活性可在细胞提取物中恢复,且与细胞提取物中的蛋白质浓度成正比。通过硫酸铵沉淀,然后进行反相和凝胶过滤柱色谱,比活性提高了125倍。部分纯化的锰(Ⅱ)氧化制剂的活性在pH约为7时最适宜,温度最适宜为35℃,加热会使其丧失活性。锰(Ⅱ)氧化活性对叠氮化钠和氯化汞敏感。它受到氰化钾、乙二胺四乙酸、三羟甲基氨基甲烷和邻菲罗啉的抑制。尽管大多数数据表明蛋白质参与了锰(Ⅱ)的氧化,但在低浓度下,十二烷基硫酸钠以及用链霉蛋白酶和V8蛋白酶处理会对该活性有轻微刺激。通过聚丙烯酰胺凝胶电泳,检测到两个估计分子量分别为180,000和250,000的锰(Ⅱ)氧化因子。

相似文献

1
Partial purification and characterization of manganese-oxidizing factors of Pseudomonas fluorescens GB-1.
Appl Environ Microbiol. 1997 Dec;63(12):4793-9. doi: 10.1128/aem.63.12.4793-4799.1997.
2
Manganese oxidation by Leptothrix discophora.
J Bacteriol. 1987 Feb;169(2):489-94. doi: 10.1128/jb.169.2.489-494.1987.
5
Purification and characterization of an alkaline lipase from Pseudomonas fluorescens AK102.
Biosci Biotechnol Biochem. 1994 Sep;58(9):1564-8. doi: 10.1271/bbb.58.1564.
6
Mn(II) oxidation is catalyzed by heme peroxidases in "Aurantimonas manganoxydans" strain SI85-9A1 and Erythrobacter sp. strain SD-21.
Appl Environ Microbiol. 2009 Jun;75(12):4130-8. doi: 10.1128/AEM.02890-08. Epub 2009 May 1.
7
Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein.
Appl Environ Microbiol. 1992 Feb;58(2):450-4. doi: 10.1128/aem.58.2.450-454.1992.
8
Manganese (Mn) oxidation increases intracellular Mn in Pseudomonas putida GB-1.
PLoS One. 2013 Oct 17;8(10):e77835. doi: 10.1371/journal.pone.0077835. eCollection 2013.
9
Heterologous expression and characterization of the manganese-oxidizing protein from Erythrobacter sp. strain SD21.
Appl Environ Microbiol. 2014 Nov;80(21):6837-42. doi: 10.1128/AEM.01873-14. Epub 2014 Aug 29.
10

引用本文的文献

1
Isolation, characterization, and genetic manipulation of cold-tolerant, manganese-oxidizing sp. strains.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0051024. doi: 10.1128/aem.00510-24. Epub 2024 Aug 30.
2
Advances in Research on Bacterial Oxidation of Mn(II): A Visualized Bibliometric Analysis Based on CiteSpace.
Microorganisms. 2024 Aug 7;12(8):1611. doi: 10.3390/microorganisms12081611.
3
Biologically Assisted One-Step Synthesis of Electrode Materials for Li-Ion Batteries.
Microorganisms. 2023 Feb 27;11(3):603. doi: 10.3390/microorganisms11030603.
4
Diversity of Mixotrophic Neutrophilic Thiosulfate- and Iron-Oxidizing Bacteria from Deep-Sea Hydrothermal Vents.
Microorganisms. 2022 Dec 30;11(1):100. doi: 10.3390/microorganisms11010100.
5
Manganese Pollution and Its Remediation: A Review of Biological Removal and Promising Combination Strategies.
Microorganisms. 2022 Dec 6;10(12):2411. doi: 10.3390/microorganisms10122411.
6
Challenges of Measuring Soluble Mn(III) Species in Natural Samples.
Molecules. 2022 Mar 3;27(5):1661. doi: 10.3390/molecules27051661.
7
Manganese Stress Adaptation Mechanisms of Strain ST7 From Mine Soil.
Front Microbiol. 2021 Nov 25;12:758889. doi: 10.3389/fmicb.2021.758889. eCollection 2021.
10
Microbially Induced Mineralization of Layered Mn Oxides Electroactive in Li Batteries.
Front Microbiol. 2020 Sep 10;11:2031. doi: 10.3389/fmicb.2020.02031. eCollection 2020.

本文引用的文献

1
Manganese oxidation by spores and spore coats of a marine bacillus species.
Appl Environ Microbiol. 1986 Nov;52(5):1096-100. doi: 10.1128/aem.52.5.1096-1100.1986.
2
Use of poisons in determination of microbial manganese binding rates in seawater.
Appl Environ Microbiol. 1984 Apr;47(4):740-5. doi: 10.1128/aem.47.4.740-745.1984.
3
Kinetics of manganese oxidation by cell-free extracts of bacteria isolated from manganese concretions from soil.
Appl Environ Microbiol. 1980 Jan;39(1):74-80. doi: 10.1128/aem.39.1.74-80.1980.
4
DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS.
Ann N Y Acad Sci. 1964 Dec 28;121:404-27. doi: 10.1111/j.1749-6632.1964.tb14213.x.
6
Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity.
Anal Biochem. 1981 Nov 1;117(2):307-10. doi: 10.1016/0003-2697(81)90783-1.
9
Manganese oxidation by Leptothrix discophora.
J Bacteriol. 1987 Feb;169(2):489-94. doi: 10.1128/jb.169.2.489-494.1987.
10
Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein.
Appl Environ Microbiol. 1992 Feb;58(2):450-4. doi: 10.1128/aem.58.2.450-454.1992.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验